化学学报 ›› 2014, Vol. 72 ›› Issue (4): 456-460.DOI: 10.6023/A13121262 上一篇    下一篇

研究论文

可吸附紫精化合物电致变色器件

李梅a, 杨树威a, 郑建明a, 徐春叶a,b   

  1. a 中国科学技术大学合肥微尺度物质科学国家实验室 合肥 230026;
    b 中国科学技术大学化学与材料科学学院高分子科学与工程系 合肥 230026
  • 收稿日期:2013-12-20 出版日期:2014-04-14 发布日期:2014-03-20
  • 通讯作者: 徐春叶 E-mail:chunye@ustc.edu.cn; Tel.:0551-63603459 E-mail:chunye@ustc.edu.cn
  • 基金资助:
    项目受国家自然科学基金(Nos.21274138,21074125)、中国科学院百人计划和中组部国家千人计划资助.

Electrochromic Device Based on Adsorbable Viologens

Li Meia, Yang Shuweia, Zheng Jianminga, Xu Chunyea,b   

  1. a Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026;
    b Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026
  • Received:2013-12-20 Online:2014-04-14 Published:2014-03-20
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Nos. 21274138, 21074125), the “Hundred Talents Program” of CAS and the National “Thousand Talents Program.”

研究报道了一种基于可吸附的固态紫精化合物电致变色器件. 我们设计并合成了一种新型可吸附的不对称紫精化合物,其一端引入三苯胺基团用以修饰紫精化合物的电致变色性质,另一端引入膦酸基团使其固定于电极上,以提高变色速度,增加器件稳定性. 将所合成的材料应用于器件中,得到了高透过差值和高稳定的电致变色器件. 我们利用紫外-可见-红外分光光度计、电化学工作站以及CIE 1931 %YLxy色度系统对其电致变色性能以及颜色进行了表征.

关键词: 电致变色, 紫精化合物, 三苯胺, 可吸附

An electrochromic device (ECD) can change color absorption when subjected to an appropriate voltage. Such a device includes three components: a working electrode, a counter electrode, and an electrolyte. Viologens (Vio) are commonly used kinds of compounds cathodic electrochromic materials, and triphenylamines (TPA) are anodic electrochromic materials. Here, we designed and synthesized a novel donor-acceptor type electrochromic viologen, 1-(N-phenyl-N-p- tolylbenzenamine)-1'-(2-phosphnoethyl)-4,4'-bipyridinium dichloride (VT), which contained a triphenylamine (TPA) group that tunes the electron cloud structure of viologen, so as to tune the electrochromic color, and a phosphonic acid group that will be anchored onto the surface of TiO2 nano-particles, so as to improve color changing speed. And an electrochromic electrode was prepared by chemisorption using the synthesized VT as the primary electrochromic material, and a Prussian blue electrode was prepared using electrochemical deposition method as the secondary one. IR spectral and X-Ray Photoelectron Spectrometer showed that the VT molecules were well bonded with Titanium dioxide nanoparticles film. And then those electrodes were assembled into one device using PC/LiClO4 as electrolyte. The performances of solid electrochromic device based on adsorbable viologen were also characterized. As expected, the device exhibited vivid changing color, light yellow in the bleached state and indigo blue in the dark state, fast color changing time (less than 1 s) and good stability (up to 10000 cycles), which was contributed by the adsorption structures. By using the CIE 1931 %YLxy colorimetric system (Commission Internationale de I'Eclairage), color coordinates of the ECD were also measured. The good electrochromic performance suggested this device could be widely used to manufacture smart glasses, auto-mobile windows, and anti-dazzle mirrors.

Key words: electrochromism, viologen, triphenylamine, adsorbable