Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries
Wang Xiaoyu, Zhang Yu, Ma Lei, Wei Liangming
Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Microelectronics and Nanoscience, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
In the area of novel power sources, silicon anode in lithium-ion battery, with an ultrahigh theoretical specific capacity of 4200 mAh·g-1, has drawn numerous attentions and got to highlighting spot. Nevertheless, it suffers rapid capacity loss and short cyclability ascribed to the huge volume change during lithiation/delithiation process. So far, one of the most effective methods to ameliorate performances of silicon anode is to modify binders. In this way, the contact integrity among active materials, conductive additives and current collectors can be maintained, which may weaken the cracking and pulverization, keep high specific capacity as well as strengthen the cyclability of silicon anode. Considering both the advantages of silicon anode and the developments of binders, a review on silicon anode in lithium-ion battery will be demonstrated systematically. Besides, we describe the main effects of binders against battery performances. We hope that our review would provide research directions in the developments and applications of binders used in silicon anode of lithium-ion battery.
Zhao, L. J.; Zhao, Q.; Niu, Z. Q.; Liang, J.; Tao, Z. L.; Chen, J. Chinese J. Inorg. Chem. 2016, 32, 929.
[7]
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.
[8]
Sharma, R. A. J. Electrochem. Soc. 1976, 123, 1763.
[9]
Seefurth, R. N.; Sharma, R. A. J. Electrochem. Soc. 1977, 124, 1207.
[10]
Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838.
[11]
Deshpande, R.; Cheng, Y.-T.; Verbrugge, M. W. J. Power Sources 2010, 195, 5081.
[12]
Kamali, A. R.; Fray, D. J. J. New Mater. Electrochem. Syst. 2010, 13, 147.
[13]
Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Chem. Soc. Rev. 2010, 39, 3115.
[14]
Zhang, W.-J. J. Power Sources 2011, 196, 13.
[15]
Wu, H.; Cui, Y. Nano Today 2012, 7, 414.
[16]
Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844.
[17]
Song, T.; Xia, J.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. C.; Rogers, J. A.; Paik, U. Nano Lett. 2010, 10, 1710.
[18]
Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Nat. Nanotechnol. 2012, 7, 310.
Kim, I.-s.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 2004, 7, A44.
[52]
Kim, I.-S.; Kumta, P. N. J. Power Sources 2004, 136, 145.
[53]
Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A234.
[54]
Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. J. Power Sources 2010, 195, 2069.
[55]
Santimetaneedol, A.; Tripuraneni, R.; Chester, S. A.; Nadimpalli, S. P. V. J. Power Sources 2016, 332, 118.
[56]
Grillet, A. M.; Humplik, T.; Stirrup, E. K.; Roberts, S. A.; Barringer, D. A.; Snyder, C. M.; Janvrin, M. R.; Apblett, C. A. J. Electrochem. Soc. 2016, 163, A1859.
[57]
Drofenik, J.; Gaberscek, M.; Dominko, R.; Poulsen, F. W.; Mogensen, M.; Pejovnik, S.; Jamnik, J. Electrochim. Acta 2003, 48, 883.
Dufficy, M. K.; Khan, S. A.; Fedkiw, P. S. J. Mater. Chem. A 2015, 3, 12023.
[103]
Kuruba, R.; Datta, M. K.; Damodaran, K.; Jampani, P. H.; Gattu, B.; Patel, P. P.; Shanthi, P. M.; Damle, S.; Kumta, P. N. J. Power Sources 2015, 298, 331.
[104]
Chen, D.; Yi, R.; Chen, S.; Xu, T.; Gordin, M. L.; Wang, D. Solid State Ionics 2014, 254, 65.
[105]
Jeong, Y. K.; Kwon, T.-w.; Lee, I.; Kim, T.-S.; Coskun, A.; Choi, J. W. Energ. Environ. Sci. 2015, 8, 1224.
[106]
Klamor, S.; Schroder, M.; Brunklaus, G.; Niehoff, P.; Berkemeier, F.; Schappacher, F. M.; Winter, M. Phys. Chem. Chem. Phys. 2015, 17, 5632.
[107]
Bie, Y.; Yang, J.; Nuli, Y.; Wang, J. J. Mater. Chem. A 2017, 5, 1919.
[108]
Yoon, D. E.; Hwang, C.; Kang, N. R.; Lee, U.; Ahn, D.; Kim, J. Y.; Song, H. K. ACS Appl. Mater. Interfaces 2016, 8, 4042.
[109]
Zhao, X.; Yim, C.-H.; Du, N.; Abu-Lebdeh, Y. Ind. Eng. Chem. Res. 2018, 57, 9062.
Shao, D.; Zhong, H.; Zhang, L. ChemElectroChem 2014, 1, 1679.
[115]
Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; Nicolosi, V.; Coleman, J. N. ACS Nano 2016, 10, 3702.
[116]
Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314.