化学学报 ›› 2019, Vol. 77 ›› Issue (9): 922-926.DOI: 10.6023/A19050158 上一篇    下一篇

所属专题: 有机自由基化学

研究论文

磺酰氯参与的基于远端炔基迁移的非活化烯烃炔基化反应

汤娜娜a, 邵鑫a, 王明扬a, 吴新鑫a, 朱晨ab*()   

  1. a苏州大学 材料与化学化工学部 苏州 215123
    b中国科学院上海有机化学研究所 天然产物有机合成重点实验室 上海 200032
  • 收稿日期:2019-05-01 出版日期:2019-09-15 发布日期:2019-06-04
  • 通讯作者: 朱晨 E-mail:chzhu@suda.edu.cn
  • 基金资助:
    项目受国家自然科学基金资助(No. 21722205)

Sulfonyl Chlorides Mediated Alkynylation of Non-activated Alkenes via Distal Alkynyl Group Migration

Tang, Nanaa, Shao, Xina, Wang, Mingyanga, Wu, Xinxina, Zhu, Chenab*()   

  1. aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123
    bKey Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
  • Received:2019-05-01 Online:2019-09-15 Published:2019-06-04
  • Contact: Zhu, Chen E-mail:chzhu@suda.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China(No. 21722205)

利用自由基参与的远端炔基迁移策略实现了非活化烯烃的炔基化反应. 以磺酰氯为试剂, 在可见光促进下形成三氟甲基自由基或芳基(烷基)磺酰基自由基, 随后加成到非活化烯烃上, 生成烷基自由基中间体, 继而诱导远端炔烃的分子内迁移, 得到三氟甲基炔基化或磺酰基炔基化产物. 该方法具有条件温和、底物易得以及官能团兼容性广等优点.

关键词: 炔基化, 三氟甲基化, 磺酰化, 烯烃双官能团化, 官能团迁移

Radical-mediated difunctionalization of alkenes through the remote functional group migration (FGM) process paves an ingenious avenue for simultaneous cleavage and reconstruction of C—C bonds. Recently, our group has systematically disclosed the strategy of remote FGM for radical-mediated difunctionalization of unactivated alkenes. A portfolio of functional groups including cyano, heteroaryl, alkynyl, oximino, and carbonyl showcase the migratory aptitude, leading to new C—C bonds under radical conditions. Meanwhile, a series of other chemical bonds such as C—C, C—N, C—P, C—Si, and C—S are readily constructed in the reaction. Considering the synthetic utility and flexible transformation of alkynes, the radical alkynylation of unactivated alkenes via remote alkynyl migration we firstly reported provides an efficient approach for the incorporation of alkynes and has received considerable attention. On the other hand, fluorine- and sulfonyl-containing molecules play vital roles in organic and medicinal chemistry owing to their important chemical and physical characters. Therefore, the concomitant introduction of an alkynyl and a trifluoromethyl/sulfonyl group into one molecule is of great synthetic value. Herein we report a useful method for carbo-trifluoroalkylation/sulfonylation of unactivated olefins. The addition of extrinsic radical to alkene triggers the intramolecular FGM via a five-membered transition state along with a cascade of bond fission and formation. The typical procedure is as follows: a mixture of propargyl alcohol 1, sulfonyl chloride, fac-Ir(ppy)3, and base is loaded in a flame-dried reaction vial which is subjected to evacuation/flushing with nitrogen three times. Solvent is added to the mixture via syringe and the mixture is then stirred at 25 ℃ until the starting material is consumed monitored by TLC. The mixture is concentrated, and purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the product.

Key words: alkynylation, trifluoromethylation, carbosulfonylation, alkene difunctionalization, functional group migration