N,N'—双水杨酰代乙二胺合铜 (II)酸根和 N,N'—1,2—双水杨酰代丙二胺合铜(II)酸根的 Cu(II)—Co(II) 双核配合物的合成和磁性

廖代正* 赵倩华 王耕霖 (南开大学化学系,天津)

本文合成了两个新型双核配合物,[Cu(Samen)Co(L)₂]和[Cu(Sampn)Co(L)₂],Samen⁴- 表示 N, N'-双水杨酰代乙二胺根阴离子,Sampn⁴- 表示 N, N'-1,2-双水杨酰代丙二胺根阴离子,L表示 5-硝基-1,10-菲咯啉(NO_2 -Phen)。 经元素分析,IR 和电子光谱等推定配合物具有酚氧桥结构,Cu(II)及 Co(II)的配位环境分别为平面四方及畸变八面体构型。测定了配合物(4—300 K)的变温磁化率,并用最小二乘法和从自旋 Hamiltonian 算符, Ω =2 JS_1 · S_2 - DS_2 1 导出的磁方程拟合,求得交换参数为 J=-4.39(Samen)和 -3.59 cm⁻¹(Sampn),表明两个 Cu(II)-Co(II)双核配合物中有弱的反铁磁性超交换相互作用。

近年来,人们对研究桥联多核配合物的兴趣日益增加,已发现这种桥联多核结构广泛存在 于生物体的金属蛋白及氧化酶中,它们对生物体有着微妙的生物活性和催化作用^口,因而设 计,合成新型多核配合物,研究其光磁等性质,弄清金属离子间相互作用的本质,对探索生理过 程、生物模拟以及寻找功能材料均具有一定的意义.

基于酰胺类配体的生物特性,我们已使用 N, N'-双水杨酰代乙二胺合铜(II)酸根阴离子 {[Cu(Samen)]^2-}作为双齿配体合成了一系列双核配合物,[Cu(Samen)M(L)_x](M=Cu, x=1, M=Ni, Mn, x=2, L=Bpy,或 Phen) C^{2} , C^{3} . 本文报道用[Cu(Samen)] C^{2} -和 C^{3}

实 验

仪器和方法 元素分析采用 Perkin-Elmer 240 元素分析仪. 金属含量测定采用 EDTA 容量法. 红外光谱用岛津 IR-408 型红外光谱仪(KBr 压片). 电子光谱采用日立-340 型光谱仪(粉末样品). 热分析使用 Du Pont 1090 B 型热分析仪. 变温磁化率采用由中国科学院物理所与法国共同研制的 CF-提拉样品磁强计测定,有效磁矩用 $\mu_{\rm eff}=2.828(\chi T)^{1/2}$ 计算,反磁部分用 Pascal's 常数校正.

试剂 N, N'-双水杨酰代乙二胺合铜(II)酸钠的五水合物 $\{Na_2[Cu(Samen)] \cdot 5H_2O\}$ \mathcal{N} , N'-1, 2-双水杨酰代丙二胺合铜(II)酸钠的七水合物 $\{Na_2[Cu(Sampn)] \cdot 7H_2O\}$ 分别按文献方法合成^[4,5]. 5-硝基-1, 10-非咯啉以及六水合氯化钴等均为分析纯

[Cu(Samen)Co(NO₂-Phen)₂]的合成 在氮气保护下将 60 mg CoOl₂·6H₂O 和 115 mg

 NO_2 -Phen 在 $10\,\text{mL}$ 水中搅拌混合,得黄色溶液,逐滴加入 $140\,\text{mg}$ Na_2 [Cu(Samen)] $\cdot 5H_2O$ 的 $10\,\text{mL}$ 水溶液,析出沉淀,过滤,用水洗涤多次,真空干燥,得褐色微晶状产物, $C_{40}H_{26}N_8O_8$ -CoCu $\cdot 3H_2O$ (计算值,C, 52.04; H, 3.49; N, 12.14; Co, 6.38; Cu, 6.88. 实测值,C, 52.27; H, 3.09; N, 11.77; Co, 6.15; Cu, 6.53).

[Cu(Sampn)Co(NO₂—Phen)₂]的合成 除使用 150 mg Na₂[Cu(Sampn)] ·7H₂O 代替 Na₂[Cu(Samen)] ·5H₂O 外, 其它过程与[Cu(Samen)Co(NO₂-Phen)₂]相同, 得浅褐色微晶状产物, C₄₁H₂₈N₈O₈CoCu·2H₂O(计算值: C, 53.57; H, 3.51; N, 12.19; Co, 6.41; Cu, 6.91. 实测值: C, 53.81; H, 3.42; N, 12.19; Co, 6.35; Cu, 6.59).

结果与讨论

配合物组成及空间构型的推定 元素分析及 热 重 分析表明, Na_2 [Cu(Samen)]·5 H_2 O 或 Na_2 [Cu(Sampn)]·7 H_2 O 同 CoCl₂·6 H_2 O 和 NO_2 -Phen 反应可形成双核 配 合 物 . 配 合 物 为 分子型化合物,无适合溶剂,故未能得到适合进行 X 射线结构分析的单晶样品。参照类似配 合物的文献报道 L^{2_0} 8,6,77,可初步认为有图 1 所示的构型。红外、电子光谱及变温磁化率等数据 也都说明此构型是合理的。

文献已报道^[83],含有酚氧基的单核配合物,在桥接成双核配合物时,接近 1520 cm⁻¹ 的一个骨架振动吸收将向高频区偏移,此位移常用于判断有无酚氧桥结构的探针。 在本文合成的两个配合物中,也观察到类似的偏移,即在形成双核配合物时,原单核配合物 Na₂ [Cu (Samen)] · 5H₂O 的 1516 cm⁻¹ 和 Na₂ [Cu (Sampn)] · 7H₂O 的 1515 cm⁻¹ 分别往高 频 区 偏 移 到 1522 和 1530 cm⁻¹。此外,在 3300 cm⁻¹ 处有一宽峰,它可归于结晶水的特征频率。 热重分析表明,[Cu (Samen) Co (NO₂-Phen)₂] · 3H₂O 在 50—110 °C 失 水,理论失水重为 3.92 %,热重曲线得到的为 4.14 %。 两种双核配合物在固态时相当稳定,但不溶于一般溶剂中,故测试了粉末样品的反射电子光谱(图 2)。 对于两个双核配合物均出现三个吸收带,其中~ 18.7×10^3 cm⁻¹ 可派定为 Cu (II) 离子的 d-d 跃迁^[23],其余两个谱带可归属于八面体环境 Co (II) 离子的跃迁, 4 T_{2g} $\overset{\nu_1}{\longleftarrow}$ 4 T_{1g} (9.6×10³ cm⁻¹) 和 4 T_{1g} (P) $\overset{\nu_2}{\longleftarrow}$ 4 T_{1g} [21.6×10³ cm⁻¹(Samen); 21.8×10³ cm⁻² (Sampn)]。 Co (II) 离子的另一个自旋允许带 (4 A_{2g} $\overset{\nu_2}{\longleftarrow}$ 4 T_{1g}),因属二电子跃迁,谱图上不易观察出来。利用配位场理论导出的跃迁能公式^[53],使用两个观察带 (ν_1, ν_2) 可评价出 ν_2 ,场强参数 D_6 值和 Racah 参数 B 值:

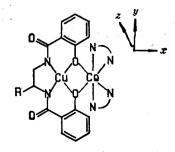


图 1 配合物的化学结构 R—H, CH₈

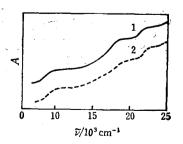


图 2 配合物的 电子光谱 1—[Cu(Samen)Co(NO₂-Phen)₂] 2—[Cu(Sampn)Co(NO₂-Phen)₂]

 $[\mathrm{Cu}(\mathrm{Samen})\mathrm{Co}(\mathrm{NO_2-Phen})_2]$: $\nu_2=20.5\times10^3\,\mathrm{cm^{-1}}$, $D_q=1086\,\mathrm{cm^{-1}}$, $B=898\,\mathrm{cm^{-1}}$ $[\mathrm{Cu}(\mathrm{Sampn})\mathrm{Co}(\mathrm{NO_2-Phen})_2]$: $\nu_2=20.4\times10^3\,\mathrm{cm^{-1}}$, $D_q=1088\,\mathrm{cm^{-1}}$, $B=882\,\mathrm{cm^{-1}}$ 由此可见,配合物的 B 值小于自由离子的 B 值 (1115 $\mathrm{cm^{-1}}$),电子云扩充系数 $\beta=B_{\mathrm{Edb}}/B_{\mathrm{fin}}$ ± 0.8 ,表明配合物有一定的共价性 (100.8)

配合物的自旋磁交换作用 测定了两个 Cu(II)-Co(II) 双核配合物的(4—300 K) 变温磁化率、见图 3 及图 4. 为了定量说明双核配合物中磁交换作用的大小,文 献 曾 报 道,使用 Heisenberg Hamiltonian 算符($\hat{H}=-2J\hat{S}_1\cdot\hat{S}_2$) 能近似表示顺磁离子间的自旋磁交换作用,以此算符推导出的 Cu(II) (S=1/2)-Co(II) (S=3/2)体系的理论磁化率方程为[III]

$$\chi_{\rm M} = \left(\frac{Ng^2\beta^2}{KT}\right) \left[\frac{10 + 2\exp(-4J/KT)}{5 + 3\exp(-4J/KT)}\right] + N\alpha \tag{1}$$

对于本文合成的两个 Cu(II)—Co(II)配合物,在以实测值与理论值的拟合过程中,发现使用方程(1)计算理论磁化率时,低温区的理论曲线与实验点无法达到拟合。其原因主要在于未考虑 Co(II)($^4T_{2g}$)的单离子零场相互作用,为此我们使用了修正的 Heisenberg 模型,即用 $\hat{H}=-2J\hat{S}_1\cdot\hat{S}_2-D\hat{S}_{*1}^2$ 来表示体系的自旋 Hamiltonian 算符^[13],式中 D 是 Co(II)离子的轴向零场分裂参数,J 是交换积分,由此算符推出的 Cu(II)—Co(II)体系的理论磁化率方程为^[13]

$$\chi_{\mathbf{M}} = [2Ng^{2}\beta^{2}/(KT)] \left[\exp(A) + 4\exp(C) + \exp(E) \right] / \left[2\exp(A) + \exp(B) + 2\exp(C) + \exp(D) + 2\exp(E) \right]$$

$$A = \left[4J + 5D/4 - (4J^{2} - 2DJ + D^{2})^{1/2} \right] / (KT)$$

$$B = (2J + D/4) / (KT)$$

$$C = (6J + 9D/4) / (KT)$$

$$D = (6J + D/4) / (KT)$$

$$E = \left[4J + 5D/4 + (4J^{2} - 2DJ + D^{2})^{1/2} \right] / (KT)$$

式中符号均具有通常的意义。 由图 3 和图 4 可见, 用最小二乘法可使变温磁化率的实测值和 理论值取得相当一致, 拟合因子 $F^{(18)}$ 达到 10^{-8} . 经拟合过程得到的磁参数分别为.

[Cu(Samen)Co(NO₂-Phen)₂]:
$$J = -4.39 \,\mathrm{cm^{-1}}$$
, $g = 2.26$, $D = -1.83 \,\mathrm{cm^{-1}}$

 $[Cu(Sampn)Co(NO_2-Phen)_2]$: $J=-3.59 \text{ cm}^{-1}$, g=2.33, $D=-1.99 \text{ cm}^{-1}$

J<0 说明在双核配合物中 Cu(II) 离子和 Co(II) 离子间为反铁磁超交换相互作用,数值不大的 J 值说明这种作用比较微弱^[23]

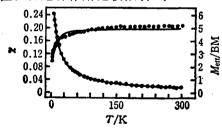


图 8 [Cu(Samon)Co(NO₂-Phen)₂]的变 温磁化率和磁矩

黑点为实验值,磁化率由方程(2),用正文磁参数得到, 磁矩曲线由方程 //etf=2.828(xT)^{1/2} 计算得到

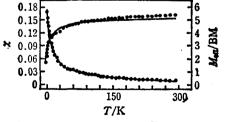


图 4 [Cu(Sampn)Co(NO₂-Phen)₂]的变 温磁化率和磁矩

黑点为实验值,磁化率由方程(2),用正文磁参数得到, 磁矩曲线由方程 $\mu_{eff}=2.828(\chi T)^{1/2}$ 计算得到

为了解释金属离子间的磁交换作用的机理,Kahn 等已提出用近似分子轨道模型来说明交换积分J的符号和大小 $^{[14,15]}$,在此模型中,实验得到的交换积分的二倍(2J)可视为负值的反铁磁贡献 J_{AF} 和正值的铁磁贡献 J_{F} 之和,即 $2J=J_{AF}+J_{F}$. 模型假设 J_{F} 比 J_{AF} 小得多,

所以只要 $J_{AF} \neq 0$,体系即为反铁磁超交换相互作用。对于杂双核配合物,Kahn 已用近似方法推出[16]

$$J_{AF} = \frac{-2}{n_{A}n_{B}} \sum_{i=1}^{n_{A}(

$$J_{F} = \frac{2}{n_{A}n_{B}} \sum_{i=1}^{n_{A}} \sum_{j=1}^{n_{B}} \langle \phi_{Ai}(1) \phi_{Bj}(2) | r_{12}^{-1} | \phi_{Ai}(2) \phi_{Bj}(1) \rangle$$
(3)$$

 n_A 和 n_B 是两个顺磁离子的未成对电子数目, S_i 是具有相同位置对称性的两个磁轨道间的重迭积分,即 $S_i = \langle \phi_{Ai} | \phi_{Bi} \rangle$, δ_i 是 ϕ_{Ai} 和 ϕ_{Bi} 之间的能差, A_i 是两个磁轨道形成两个分子轨道之间的能差。对于本文合成的两个 Cu(II)—Co(II) 双核配合物, $n_A=1$, $n_B=3$,如配合物近似视为 C_{20} 对称性并按图 1 选取坐标系,则 Cu(II) 和 Co(II) 的 3d 轨道的对称性为 $a_1(d_{a_1}, d_{a_2-y^2})$, $a_2(d_{y_1})$, $b_1(d_{a_2})$ 和 $b_2(d_{x_2})$. 于是绕 Cu(II) 的一个未成对电子占据 b_1 轨道,Co(II) 的未成对电子在绕 Co(II) 的 b_1 轨道上有一定分布 co(II) 的一个未成对电子占据 co(II) 的 co(II) 与 co(II) 与 co(II) 之间将产生反铁磁相互作用,其数值为 co(II) 由于co(II) 为co(II) 为co(II) 为co(II) 为 co(II) 为 co(II

参考文献

- [1] Willett, R. D.; Gattesch, D.; Kahn, O., (Eds), "Magnet-Structural Correlations in Exchange Coupled Systems", Reidel Publishing Co., Dordrecht, 1985, p. 463.
- [2] Liao, D. Z.; Zhung, J. H.; Okawa, H.; Kida, S., Inorg. Chem. Acta, 1986, 118, 21.
- [3] Liao, D. Z.; Zhang, Z. W.; Zhang, Z. Y., Book of Abstracts, XXV ICCC. Nanjing, 1987, C2-500.
- [4] Ojima, H., Nippon Kagaku Kaishi, 1967, 88, 329.
- [5] Ojima. H.: Yamada, K., Bull. Aichi. Univ. Educ., 1967, 3, 19.
- [6] 廖代正,高等学校化学学报,1988,9,647.
- [7] 廖代正,赵倩华,王耕霖,高等学校化学学报,1989. 10,566
- [8] Harris, C. M.; Sinn, E., J. Inorg. Nucl. Chem., 1968, 30, 2723.
- [9] 王耕霖,廖代正,张智勇,姜宗慧,化学学报,1985,34,433.
- [10] Jorgensn, C. K., Progr. Inorg. Chem., 1962, 4, 101.
- [11] Okawa, H.; Imada, Y.; Tanaka, M., Inorg. Chim. Acta, 1987, 129, 173.
- [12] Lambert, S. L.; Spiro, C. L.; Gagne, R. R.; Hendrickson, D. N., Inorg. Chem., 1982, 21, 68.
- [13] Chiari, B.; Helms, H. J.; Piovesana, O.; Tarantell, T.; Zanazzi, P. F., Inorg. Chem., 1986, 25, 870.
- [14] Kahn, O.; Charlot, M. F., Nouv. J. Chim., 1980, 4, 567.
- [15] Cairns, C. J.; Busch, D, H., Coordin. Chem. Rev., 1986, 69. 1
- [16] Kahn, O.; Tola, P.; Coudanne, H., Chem. Phys., 1979, 42, 355.

Synthesis and Magnetism of Copper (II) - Cobalt (II) Binuclear Complexes with N, N'-Ethylenedisalicylamidatocuprate (II) and N, N'-1, 2-Propylenedisalicylamidatocuprate (II)

Liao, Dai-Zheng* Zhao, Qian-Hua Wang, Geng-Lin (Department of Chemistry, Nankai University, Tianjin)

Abstract

New binuclear complexes, [Cu(Samen)Co(NO₂-Phen)₂] and [Cu(Sampn)Co(NO₂-Phen)₂] were synthesized, where Samen⁴⁻, Sampn⁴⁻ and NO₂-Phen denote N, N'-ethylenedisalicylamidate anion N, N'-1, 2-propylenedisalicylamidate anion and 5-nitro-1, 10-phenanthroline respectively. Based on IR, elemental analyses and electronic spectra the complexes are proposed to have phenoxy-bridged structure and to consist of a Cu(II) in a planar environment and Co(II) in a distorted octahedron. The complexes have been characterized with variable-temparature magnetic susceptibility (4—300 K) and the data were least-squares fit to a susceptibility equation derived from spin Hamiltonian, $\hat{H} = 2J\hat{S}_1\hat{S}_2 - D\hat{S}_{21}^2$. The exchange integral, J, was found to be $-4.39\,\mathrm{cm}^{-1}$ for [Cu(Samen)Co(NO₂-Phen)₂] and $-3.59\,\mathrm{cm}^{-1}$ for [Cu(Sampn)Co(NO₂-Phen)₂], indicating that a weak antiferromagnetic superexchange interaction operates between the metal ions.