$3a\beta$ —羟基 -4α —氯 $-7a\beta$ —甲基六氢茚— 1,5—二酮和 $4a\beta,5\beta$ —环氧 $-8a\beta$ —甲基十氢萘-1,6—二酮的晶体结构和分子构型

张志明 夏宗芗* 蔡祖恽 王 颖 (中国科学院上海有机化学研究所,上海)

用 X 射线晶体结构分析法测定了氯代羟基六氢茚二酮(1)和环氧十氢萘二酮(2)的晶体结构和分子构型. 化合物 1 属正交晶系,空间群为 Pbca,晶胞参数 a=10.439 (1), b=19.950(2), c=9.455(1) Å, Z=8; 化合物 2 属单斜晶系,空间群为 $P2_1/c$,晶胞参数 a=8.355(2),b=9.221(2), c=25.801(4) Å, $\beta=94.19$ (1)°,Z=8。在 RASA-IIS 型四圆衍射仪上收集了这两个化合物的衍射数据,用直接法解晶体结构,经块对角矩阵最小二乘修正,对化合物 1 的 1810 个独立的可观察反射,R=0.043;对化合物 2 的 1804 个独立的可观察反射,R=0.064。 化合物 1 带有 α -Cl, β -CH₃和 β -OH。由此推断环氧六氢茚二酮(3)的分子构型带有 β -CH₃和 β -环氧。化合物 2 中的甲基和环氧基均为 β 构型,与 3 相似。因此 Danishefsky 等由核磁共振所推断的关于 2 的分子构型中的 α 环氧应校正为 β 环氧。

氯代羟基六氢茚二酮(1)是一个外消旋体,它由氯代甲基乙烯酮与2-甲基-1,3-环戊二酮在含三乙胺的乙酸乙酯中反应得到^[1],经波谱和元素分析确定其分子结构为3a-羟基-4-氯-7a甲基-3a,4,5,6,7,7a-六氢茚-1,5-二酮,为了确证氯代羟基六氢茚二酮(1)中氯和羟基的构型,我们用 X 射线单晶结构分析法测定其结构,并推测环氧六氢茚二酮(3)的分子构型。与此同时我们用与合成氯代羟基六氢茚二酮(1)相同的方法制得环氧十氢萘二酮(2),并作了相似的测定。

实 验

化合物 1 的分子式为 $C_{10}H_{13}O_3Cl$, 分子量为 216.7. 晶体属正交晶系, 空间群为 Pbca. 晶胞参数 a=10.439(1), b=19.950(2), c=9.455(1)Å, Z=8, $D_c=1.461g/cm^3$, $D_o($ 悬浮法)=

¹⁹⁸⁵ 年 1 月 21 日收到。化合物 1 和 2 的氢原子坐标、各向同性热参数、非氢原子各向异性热参数及偏差均存档于化学 4 编辑部。

1.450 g/cm³. 系统消光: h0l, l=2n+1; hk0, h=2n+1; 0kl, k=2n+1.

化合物 2 的分子式为 $C_{11}H_{14}O_3$, 分子量为 194.2. 晶体属单斜晶系,空间群为 $P2_1/c$. 晶胞参数 a=8.355(2), b=9.221(2), c=25.801(4) Å, $\beta=94.19(1)$ °; Z=8; $D_c=1.301$ g/cm³. 系统消光: h0l, l=2n+1; 0k0, k=2n+1.

这两个化合物晶体的 X 射线反射数据都在 RASA-IIS 型四圆衍射仪上收集,采用石墨单色器, Mo $K\alpha$ 辐射, ω -2 θ 扫描方式。数据收集范围为 2θ =3.0~55.0°。 化合物 1 共收集 2274 个独立反射点,其中 $|F_o|$ >3 σ ($|F_o|$)的可观察反射为 1810 个。化合物 2 共收集 3508 个独立反射,其中 $|F_o|$ >3 σ ($|F_o|$)的可观察反射为 1840 个。反射数据都经 LP 校正,未作吸收校正。

结构测定和修正

化合物 1 用直接法(MULTAN 78)解晶体结构, 经 K 曲线法归一化, 选取 $|E| \ge 1.851$ 的 156 个反射, 产生八套相角。以联合品质因子最高(c=2.00)的相角套计算 E 图, 获得不对称单位内 14 个非氢原子中的 12 个, 经一轮 Fourier 合成, 得到全部非氢原子, R=0.285.

经六轮各向同性和三轮各向异性块对角矩阵最小二乘修正, R=0.075. 然后 计 算 差 值 Fourier 合成, 从 差值图上找出全部氢原子坐标. 对非氢原子作各向异性修正, 氢原子作各向同性修正两轮, 最终 R=0.043.

化合物 2 用直接法(MULTAN 78)解晶体结构,用 K 曲线法分奇偶组进行归一化,选取 $|E| \ge 2.093$ 的 191 个反射,产生六十四套相角。用联合品质因子最高(c=2.50)的相角套计算 E 图,获得不对称单位内 28 个非氢原子中的 27 个. 经一轮 Fourier 合成,得到全部非氢原子,R=0.302.

经各向同性和各向异性块对角矩阵最小二乘修正各四轮, R=0.144, 然后 计 算 差 值 Fourier 合成, 从差值图上找到 25 个氢原子, 其余 3 个采用理论计算值。 对非氢原子作各向异性修正, 氢原子作各向同性修正一轮, 最终 R=0.064.

结构的描述和讨论

如图 1 所示,化合物 1 分子中六员环呈椅式构型,五员环和六员环彼此以顺式连接. 晶体结构分析表明氯为 α 构型, 羟基为 β 构型, 甲基为 β 构型. 该晶体具有对称中心,晶胞中八个分子形成四对对映体: dl-3a β 羟基-4 α -氯 -7a β -甲基-3a, 4, 5, 6, 7, 7a-六氢茚-1, 5-二酮.

在化合物 $\mathbf{1}$ 晶胞中,分子 \mathbf{A} 中 O(2) 上的氢与分子 \mathbf{B} 中的 O(1) 形成分子 间 氢键. 氢键的键长、键角为 $O(1)\cdots O(2)$, 2.739 Å, $O(1)\cdots H(O_2)$, 1.905 Å, $O(2)\longrightarrow H(O_3)$, 0.910 Å, $\angle O(1)\cdots H(O_2)\longrightarrow O(2)$, 151.0° . 晶胞内的八个分子分别由四个这样的氢键两两相连接,如图 $\mathbf{3}$ 所示. 同时分子 \mathbf{A} , \mathbf{C} , \mathbf{E} , \mathbf{G} 中的 O(1) 又分别与相邻晶胞中的 \mathbf{B}' , \mathbf{D}' , \mathbf{F}' , \mathbf{H}' 中O(2) 上的氢形成分子间氢键(其键长、键角值与晶胞内分子间氢键键长,键角值相同),从而在晶体中形成沿 \mathbf{c} 轴伸展的锯齿形分子链.

化合物 1 中的羟基和角甲基位于同侧, 氯为异侧; 从而也确定了化合物 3^{□1} 的环氧为 β 构型. 因为它是由氯代羟基六氢茚二酮(1)与碱反应, 进行反式消除而得到.

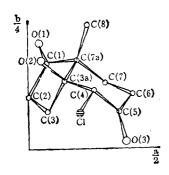


图1 化合物1不对称单位沿c轴投影

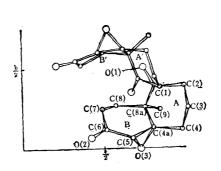


图 2 化合物 2 不对称单位沿 c 轴投影

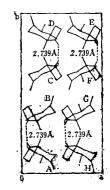


图3 化合物1晶胞 沿 c 轴投影

表 1 化合物 1 非氢原子坐标(×10⁴)和等当热参数(×10²)

原子编号	$x(\mathrm{SD})$	$y(\mathrm{SD})$	z(SD)	$B_{ m eq}({ m SD})$
C1	2006 (1)	660 (0)	3572 (1) -1160 (3) -819 (3) 456 (2) 2056 (2) 1225 (3) -35 (3) -1008 (3) 57 (3) 1091 (2) -219 (3) -2059 (2) 1837 (2) 1641 (2)	331 (2)
C(1)	735 (2)	1651 (1)		243 (9)
C(2)	0 (2)	1017 (1)		264 (9)
C(3)	689 (2)	713 (1)		210 (8)
C(4)	2552 (2)	1100 (1)		229 (9)
C(5)	3522 (2)	684 (1)		278 (10)
C(6)	4042 (2)	1056 (2)		333 (12)
C(7)	2956 (2)	1284 (1)		272 (10)
C(8)	2351 (3)	2413 (1)		337 (11)
C(3a)	1435 (2)	1305 (1)		193 (8)
C(7a)	1915 (2)	1695 (1)		213 (8)
O(1)	447 (2)	2052 (1)		401 (9)
O(2)	496 (2)	1679 (1)		245 (6)
O(3)	3808 (2)	1222 (1)		386 (9)

表 2 化合物 2 非氢原子坐标($\times 10^4$)和等当热参数($\times 10^2$)

原子编号	$x(\mathrm{SD})$	$y(\mathrm{SD})$	z(SD)	$B_{ m eq}({ m SD})$
C(1)	8194(6)	3927 (6)	387(2)	353(2 3)
C(2)	9855(6)	3855 (7)	665(2)	460(28)
C(3)	10145 (6)	2461 (7)	982(2)	456(27)
C(4)	9667 (6)	1119 (6)	667 (2)	42 0 (26)
C(4a)	7930 (6)	1268 (6)	463(2)	358 (23)
C(5)	6702 (7)	646 (6)	778(2)	419(26)
C(6)	5050 (6)	1270(7)	756(2)	439(27)
C(7)	4676 (6)	2541(7)	422(2)	417(25)
C(8)	5712 (6)	2677 (6)	-39(2)	380(24)
C(8a)	7524(6)	2565 (6)	110(2)	32 3 (22)
C(9)	8385 (7)	2415(7)	-400(2)	458 (27)
O(1)	7473(5)	5054(4)	359(2)	497 (19)
$O(\overline{2})$	4114(5)	751 (6)	1041(2)	635(24)
O(3)	7121 (5)	-30(4)	291(2)	496(19)
cáń	7184(6)	4361 (6)	1844(2)	366 (24)
C(1') C(2')	8485(6)	3951(6)	22 50 (2)	432 (26)
C(3')	8178 (6)	4508 (7)	2796(2)	500 (29)
$\tilde{\mathbf{C}}(\mathbf{4'})$	7711(6)	6104 (7)	2 801(2)	4 64 (2 8)
C(4a')	6273 (6)	6275 (6)	2416(2)	352 (23)
O(5')	4682 (6)	6101(6)	2611(2)	414(26)
C(6')	3314(6)	5561(6)	2251(3)	5 15(29)
C(7')	3575(7)	5306 (7)	1694(2)	536 (31)
C(8')	49 89 (7)	6113(7)	1504(2)	484 (29)
C(8a')	6 551 (6)	5925 (6)	1853(2)	358 (24)
C(9')	7851(8)	6948 (7)	1652 (2)	551 (32)
O(1')	6711(5)	3527 (4)	1510(1)	4 79 (19)
O(2)	2067 (5)	5278 (6)	2452(2)	76 0 (2 7)
O (3')	5280(4)	7524(4)	2476(2)	4 83 (18)

表 3-1 化合物 1 的键长(SD)(Å)

		1000(12)								
Cl-C(4) 1.774(3)	1 ' '	1.537(3)	C(6)— $C(7)$	1.529(4)						
C(1) - C(2) 1.513(4)	, , , , ,	1.536(3)	C(7)— $C(7a)$	1.551(4)						
C(1) - O(1) 1.206(3)	1 ''	1.526(4)	C(8)— $C(7a)$	1.527(4)						
C(1) - C(7a) 1.522(3)	ł i	1.505(4)	C(3a)—C(7a)	1.546(3)						
C(2)—C(3) 1.530(4	C(5)—O(3)	1.199(4)	C(3a)—O(2)	1.420(3)						
	表 3-2 化合物 1 的键角(SD)(°)									
C(2)—C(1)—C(7a) 109.	5(2) C(4)—C(5)—	O(3) 123.0(3)	C(4)—C(3a)—O(2) 111.6(2)						
C(2) - C(1) - O(1) 125.	4(2) C(6)—C(5)—C	O(3) 124.6(3)	C(7a)—C(3a)—O(2) 11 1. 0(2)						
C(7a)-C(1)-O(1) 125.	1(2) C(5)—C(6)—C	7(7) 110.8(2)	C(1)-C(7a)-C(7)	104.8(2)						
C(1)—C(2)—C(3) 105.	1(2) C(6)—C(7)—C	O(7a) 112.8(2)	C(1)—C(7a)—C(8)	113.3(2)						
C(2) - C(3) - C(3a) 104.	0(2) $C(3) - C(3a) -$	-O(4) 114.3(2)	C(1)— $C(7a)$ — $C(3$	a) 100.2(2)						
Cl-C(4)-C(5) 111.	2(2) $C(3)-C(3a)-$	-C(7a) 103.7(2)	C(7) - C(7a) - C(8) 111.7(2)						
Cl—C(4)—C(3a) 111.	6(2) C(3)—C(3a)—	-O(2) 104.3(2)	C(7) - C(7a) - C(3a)	a) 110.3(2)						
C(5) - C(4) - C(3a) 110.	C(4) - C(3a) -	-C(7a) 111.4(2)	C(8)—C(7a)—C(3a	a) 115.5(2)						
C(4)-C(5)-C(6) 112.	3(2)									
	表 4-1 化合物 2	的健长(SD) (Å))							
C(1)—C(2)	1.517(8)	C(1)-C(8	Ba) 1.	531 (7)						
C(1)— $C(1)C(3)$ — $C(4)$	1.200(7) 1.518(9)	C(2)—C(3 C(4)—C(4		533 (9) 513 (8)						
C(4a)-C(5)	1.472(8)	C(4a)C	(8a) 1.5	526 (7)						
C(4a)-O(3) C(5)-O(3)	1.430(7) 1.467(7)	C(5)—C(6) C(6)—C(7		492 (8) 475 (9)						
C(6)-O(2)	1.211(8)	C(7) - C(8)	1.5	528 (8)						
C(8)— $C(8a)C(1')$ — $C(2')$	1.538(8) 1.502(8)	C(8a)—C(C(1')—C(C(1'))		554 (8) 53 7 (8)						
C(1')-O(1')	1.201(7)	C(2')-C(3)	3') 1.5	538 (9)						
C(3')— $C(4')C(4a')$ — $C(5')$	1.523 (9) 1.465 (8)	$ \begin{array}{c} C(4')-C(C')\\ C(4a')-CC \end{array} $	4a') 1.5 (8a') 1.5	510 (8) 5 2 0 (7)						
C(4a')-O(3')	1.434(7)	C(5') - C(6') = C(6') - C(6')	6') 1.5	504 (9)						
C(5')— $O(3')C(6')$ — $O(2')$	1.455 (7) 1.225 (9)	$\begin{array}{c} C(6') - C(7') \\ C(7') - C(7') \end{array}$	7') 1.4 8') 1.5	488 (10) 508 (9)						
C(8')—C(8a')	1.541(8)	C(8a')—Ĉ		556 (8)						
	表 4-2 化合物 2	的键角(SD)(°)		,						
C(2) - C(1) - C(8a)	118.4(5)	C(2)C(1) C(1)C(2) -		120.3(5)						
C(8a)-C(1)-O(1) C(2)-C(3)-C(4)	121.2(5) 111.9(5)	C(3) - C(4)		113.1(5) 108.7(5)						
C(4)— $C(4a)$ — $C(5)C(4)$ — $C(4a)$ — $O(3)$	117.6(5) $116.8(4)$	C(4)—C(4a) C(5)—C(4a)		116.4(5)						
C(5)-C(4a)-O(3)	60.7(3)	C(8a)—C(4a	u)—O(3)	120.1(5) 113.1(4)						
C(4a) - C(5) - C(6) C(6) - C(5) - O(3)	120.6(5)	C(4a)—C(5) C(5)—C(6)		58.2(3)						
C(5) - C(6) - O(2)	114.2(5) 117.4(6)	C(7)-C(6)	0 (0)	119.0 (5) 123.4(6)						
C(6)-C(7)-C(8) C(1)-C(8a)-C(4a)	114.4(5) $107.9(4)$	C(7) - C(8) - C(8)		113.7(5)						
C(1)-C(8a)-C(9)	107.9(4)	C(1)C(8a) C(4a)C(8a		112.5(4) 112.0(4)						
C(4a)-C(8a)-C(9) C(4a)-O(3)-C(5)	$109.9(4) \\ 61.1(3)$	C(8)-C(8a) C(2')-C(1')		107.5(5)						
C(2') - C(1') - O(1')	121.5(5)	C(8a') - C(1)	. `	117.3(5) 121.1(5)						
C(1')— $C(2')$ — $C(3')C(3')$ — $C(4')$ — $C(4a')$	113.2(5)	C(2')-C(3') C(4')-C(4a)		113.1(5)						
C(4')-C(4a') -C(8a')	106.7(5) 115.9(5)	C(4')—C(4a'		117.4(5) 116.8(5)						
C(5')-C(4a')-C(8a') C(8a')-C(4a')-(3')	120.7(5) 113.8(4)	C(5') - C(4a') - C(5')	′)—O(3′)	60.3(4)						
C(4a') - C(5') - O(3')	58.9(3)	C(6')-C(5')	-O(3')	l 19 . 5 (5) l 14 . 1 (5)						
C(5')— $C(6')$ — $C(7')C(7')$ — $C(6')$ — $O(2')$	119.4(6) $124.3(6)$	$ \begin{array}{c c} C(5') - C(6') \\ C(6') - C(7') \end{array} $	-O(2')	116.2 (6)						
C(7')— $C(8')$ — $C(8a')$	113.8(5)	C(1')—C(8a	') C (4a')	114.2(6) 106.9(4)						
C(1')— $C(8a')$ — $C(8')C(4a')$ — $C(8a')$ — $C(8')$	111.9(5) 110.7(5)	C(1')—C(8a C(4a')—C(8		108.3(5) 110.4(5)						
C(8')— $C(8a')$ — $C(9')$	108.6(5)	C(4a') = 0(3a')		60.9(4)						

如图 2 所示, 化合物 2 分子中两个六员环彼此以顺式连接, 环 A 和 A' 为椅式构型, 环 B 和 B'为信封式构型。化合物 2 中的环氧和甲基也位于同侧,即环氧是 β 构型。 化合物 2 的物理数据和 Danishefsky 等^[2] 报道的一致, 故系同一物质^[1],他们当时从比较环氧十氢萘酮两个异构体的 H^1NM R 谱而认为化合物 2 的环氧为 α 构型, 现根据我们 X 射线单晶结构分析应校正为 β 构型。

武汉地质学院北京研究生部马喆生、韩绍绪同志为本工作精心收集衍射数据,特此致谢、

参考文献

- [1] 蔡祖恽,王颖,待发表。
- [2] Danishefsky, S.; Koppel, G. A., J. Chem. Soc. Chem. Comm., 1971, 367.

The Crystal Structures and Molecular Configurations of $3a\beta$ -Hydroxy- 4α -chloro- $7a\beta$ -methylperhydroindan-1, 5-dione and $4a\beta$, 5β -Epoxy- $8a\beta$ -methyldecalin-1, 6-dione

Zhang Zhi-Ming Xia Zong-Xiang* Cai Zu-Yun Wang Ying (Shanghai Institute of Organic Chemistry, Academia Sinica, Shanghai)

Abstract

The crystal structures and molecular configurations of $3a\beta$ -hydroxy- 4α -chloro- $7a\beta$ -methylperhydroindan-1, 5-dione (1) and $4a\beta$, 5β -epoxy- $8a\beta$ -methyldecalin-1, 6-dione (2) have been determined by X-ray crystal structure analysis. The crystals of compound 1 belong to orthorhombic, the space group is Pbca, with a=10.439 (1), b=19.950 (2), c=9.455 (1) Å, Z=8. The crystals of compound 2 are monoclinic, the space group is $P2_1/c$ with a=8.355 (2), b=9.221 (2), c=25.801 (4) Å, $\beta=94.19$ (1)°, Z=8. The X-ray diffraction data of both compounds were collected on RASA-IIS four-circle diffractometer. Both crystal structures were solved by direct method and refined by block-diagonal least-squares method to the R values of 0.043 and 0.064 for 1810 and 1804 independent reflections for compound 1 and 2 respectively. The molecule of 1 possesses α -chloro, β -methyl and β -hydroxyl groups. The molecular configuration of $3a\beta$, 4β -epoxy- $7a\beta$ -methylperhydroindan-1, 5-dione (3) has been deduced from that of compound 1, with β -methyl and β -epoxy groups. The crystal structure of compound 2 shows that both methyl and epoxy groups are in β -configuration. Therefore, the α -epoxy group in molecules of 2, deduced from NMR by Danishefsky $et\ al$, should be revised.