## C<sub>40</sub>, C<sub>40</sub>, Nb@C<sub>40</sub>, NbC<sub>30</sub>, Nb@C<sub>40</sub>H<sub>4</sub> 的量子化学研究

# 葛茂发 封继康\* 崔 勐 王素凡 田维全 黄旭日 李志儒

(吉林大学 理论化学计算国家重点实验室超分子结构及谱学开放实验室 长春 130023)

摘要 用量子化学从头计算方法研究了  $C_{40}$ ,  $C_{40}$ ,  $NbC_{50}$ ,  $NbC_{50}$ ,  $Nb_{6}$   $C_{40}$ H<sub>4</sub> 的几何构型、电子结构和  $C_{28}$ 一样, $C_{40}$ ( $T_d$ )基态也为  $^5A_2$  态,笼骨架上具有四个悬挂键. 计算结果表明  $C_{40}$ 和  $C_{40}$ 也  $NbC_{50}$ 和  $Nb_{60}$   $C_{40}$ 稳定,与实验结果一致.

关键词 Nb@Can, NbCan, Nb@CanHat, 电子结构

近年来,随着  $C_{60}$ 等碳笼的发现<sup>[1]</sup>和常规量合成,在世界范围内已经出现了研究碳笼和金属碳笼的热潮<sup>[2,3]</sup>.就金属和碳笼的关系而言,已经发现有以下三种类型:(1)内含的,金属(M)含于碳笼内部,常用  $M@C_n$  表示.(2)外接的:M 位于碳笼的外部,一般认为有超导性的掺杂碱金属  $C_{60}(M_3C_{60})$ 即属于这一种.(3)骨架的:最近几年发现更使化学家和材料科学家感兴趣的是骨架型金属碳笼,这种化合物的金属在笼骨架上,目前已发现又有两种类型:(1)Castleman<sup>[4]</sup>等发现的 Metallo - Carbohedrenes (Met - Cars),通式为 $M_8C_{12}$  (M = Ti, V, Zr, Hf等).(2) Metallofullerenes,通式为  $MC_n$ ,已发现有  $NbC_n$  (n > 29), $LaC_n$  (n > 35)  $[5^{-9]}$  。实验发现这类金属碳笼当 n 为奇数时,金属确实在碳笼骨架上,形成骨架型金属碳笼,而当 n 为偶数时,金属在碳笼内部,还形成内含型金属碳笼。

本文用量子化学从头计算方法对 Metallofullerenes 的代表之一,Nb@  $C_{40}$ ,Nb $C_{59}$ 等进行了比较研究,计算结果表明, $C_{40}$ 和  $C_{40}$ 比 Nb $C_{59}$ 稳定,Nb $C_{59}$ 比 Nb@  $C_{40}$ 稳定,这一结果与实验结果一致  $^{[7,8]}$ ; $C_{40}$ 和已被深入研究过的  $C_{28}$ 一样,基态都是具有  $^{5}A_{2}$  态的  $T_{d}$  构型,笼骨架上有四个悬挂键,因此有可能形成  $C_{n}H_{4}$ ,M@  $C_{n}H_{4}$  化合物  $^{[10\sim14]}$ .由于研究碳笼  $(C_{n})$  内含的金属 M 和外接 H 对碳笼的影响,对于深入理解这二者的成键性质有重要意义  $^{[12]}$ ,本文也计算了  $C_{40}H_{4}$ , $C_{40}H_{4}^{+}$ , Nb@  $C_{40}H_{4}^{+}$ ,并与 Smalley 和 Pitzer  $^{[11,12]}$ 等对  $C_{28}$ 的有关化合物的研究结果进行了对比,发现  $C_{40}$  和  $C_{28}$ 有许多相似之处.

## 1 理论方法

在 SGI/Elan工作站上利用 Gaussian 94程序对 C<sub>40</sub>, C<sub>40</sub>, C<sub>40</sub>, Nb @ C<sub>40</sub>, Nb C<sub>50</sub>, Nb @ C<sub>40</sub> H<sub>4</sub> 进行了 ab initio 分子轨道计算,对 Nb 采用(3s3p4d)/[1s1p1d] 赝势基组,同时用相应有效核势

<sup>\*</sup> 男,59岁,教授,博士生导师 收稿日期:1997-09-17,国家自然科学基金(29890210) 资助课题

代替冻结[Kr]核<sup>[15]</sup>,对 C采用了 STO - 3G 基组.

### 2 结果与讨论

 $C_{40}$ ,  $C_{40}$ ,  $C_{40}$ H<sub>4</sub>, Nb@ $C_{40}$ , Nb $C_{39}$ , Nb@ $C_{40}$ H<sub>4</sub><sup>+</sup> 优化的几何构型示于图 1 中,表 1~6 分别给出了这几种化合物的几何参数,重叠布居和 Mulliken 电荷分布.

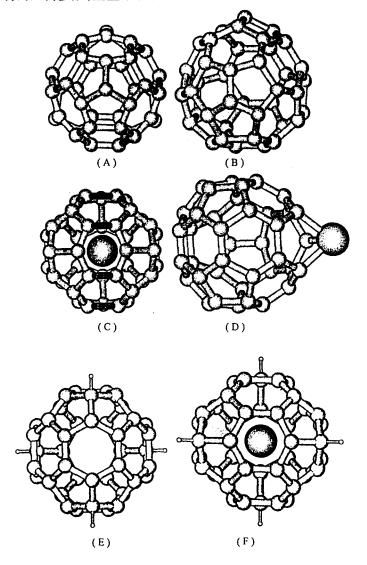



图1 优化的几何构型

(A)  $C_{40}(T_d)$ ; (B)  $C_{40}^+(C_{3v})$ ; (C)  $Nb@C_{40}^+$ ; (D)  $NbC_{39}^+$ ; (E)  $C_{40}H_4$ ; (F)  $Nb@C_{40}H_4^+$ 

### $2.1 \quad C_{40}, C_{40}^+$

 $C_{40}$  ( $T_{d}$ )有12个五元环,10个六元环,有三类不同原子,离中心最远的一类原子记作

C(I),是三个五元环交点,共 4 个原子,构成一个正四面体.第二类原子 C(I)是与 C(I)直接相连的 12 个碳原子;第三类原子 C(II)包括其余的 24 个碳原子,这类原子离中心距离最近.

|                                    | • • • • • • • • • • • • • • • • • • • • | ,      |                |
|------------------------------------|-----------------------------------------|--------|----------------|
| C <sub>40</sub> ( T <sub>d</sub> ) | 键长                                      | 重叠布居   | 电荷             |
| cc                                 | 0.1491                                  | 0.3891 | C(I) 0.03246   |
| c—c                                | 0.1413                                  | 0.4860 | C(II) -0.01086 |
| CC                                 | 0.1519                                  | 0.3973 | C(III) 0.00002 |
| c—c                                | 0.1404                                  | 0.4891 |                |

表 1  $C_{40}(T_d)$ 的几何参数(nm)、重叠布居和 Mulliken 电荷分布

 $C_{40}(T_d)$ 的基态和  $C_{28}(T_d)$ 一样,都是 $^5A_2$  态,四个单电子分别占据  $9a_1$ ,  $19t_2$  轨道, HOMO, LUMO 均由 C的2p轨道组成, HOMO – LUMO能隙为6.622eV.

 $C_{40}(T_d)$ 中三类原子 C(I), C(II), C(II) 上自旋密度分别为 1.0032, -0.0941, 0.0465, 这 表明四个单电子在  $4 \uparrow$  C(I) 原子上,即  $C_{40}(T_d)$  中确实存在  $4 \uparrow$   $C_{40}$  因此在  $4 \uparrow$  C(I) 原子上连上  $4 \uparrow$   $C_{40}$   $C_$ 

|                                |        | (      | 11              |
|--------------------------------|--------|--------|-----------------|
| C <sub>40</sub> H <sub>4</sub> | 键长     | 重叠布居   | 电荷              |
| с—с                            | 0.1523 | 0.3755 | C(1) - 0.0599   |
| cc                             | 0.1407 | 0.4915 | C(II) 0.0059    |
| cc                             | 0.1516 | 0.3956 | C(III) - 0.0054 |
| cc                             | 0.1405 | 0.4892 | H 0.0744        |
| с—н                            | 0.1092 | 0.3743 |                 |

表 2 CanHa 的几何参数(nm)、重叠布居和 Mulliken 电荷分布

保持  $T_d$  对称性的  $C_{40}^+$ ,电子态为 $^2T_2$ ,易发生 Jahn – Teller 畸变.不限制  $C_{40}$ 在  $T_d$  对称性下,优化得到具有  $C_{3v}$ 对称性和 $^2A_1$  态的  $C_{40}^+$ ,由 HF 能量可得出稳定性为  $C_{40}(T_d) > C_{40}(C_{3v})$ , $C_{40}^+$  ( $C_{3v}^-$ ), $C_{40}^+$  ( $C_{3v}^-$ )  $C_{40}^+$  ( $C_{3v}^-$ ) C

|     | 键长     | 重 <b>叠</b><br>布居 | 电荷      | 自旋<br>密度 |     | 键长     | 重 <b>叠</b><br>布居 | 电荷     | 自旋密度   |
|-----|--------|------------------|---------|----------|-----|--------|------------------|--------|--------|
| с—с | 0.1493 | 0.3884           | 0.0541  | 0.9847   | с—с | 0.1520 | 0.3964           | 0.0337 | 0.0019 |
| cc  | 0.1414 | 0.4670           | 0.0713  | 0.1543   | с-с | 0.1401 | 0.4937           | 0.0305 | 0.0185 |
| cc  | 0.1456 | 0.4108           | 0.0214  | -0.0225  | с-с | 0.1529 | 0.3934           |        |        |
| cc  | 0.1418 | 0.4825           | 0.0108  | -0.0981  | с—с | 0.1386 | 0.5105           |        |        |
| c—c | 0.1444 | 0.4556           | -0.0028 | -0.1490  | с-с | 0.1517 | 0.3964           |        |        |
| CC  | 0.1459 | 0.4404           | 0.0155  | -0.0215  | cc  | 0.1363 | 0.5322           |        |        |
| c—c | 0.1418 | 0.4830           | 0.0221  | 0.1104   |     |        |                  |        |        |

表 3  $C_{av}^+(C_{av})$ 的几何参数(nm)、重叠布居、Mulliken 电荷分布和自旋密度分布

#### 2.2 Nb@C40

内含型金属碳笼 Nb@  $C_{40}^+$ , Nb 原子位于  $C_{40}$ 笼的中心,整个分子为  $T_d$  构型,电子态为  $I_{A_1}$ , HOMO, LUMO分别为  $I_{22}$ , 20  $I_{22}$ , 均由 Nb的  $I_{22}$  的中心,整个分子为  $I_{22}$  相 成,HOMO – LUMO能 隙为  $I_{22}$  5.568eV.

| Nb@C <sub>40</sub> | 键长     | 重叠布居   | 电荷               |
|--------------------|--------|--------|------------------|
| с—с                | 0.1433 | 0.4679 | Nb 1.19288       |
| c—c                | 0.1448 | 0.4525 | C(I) -0.00955    |
| c—c                | 0.1514 | 0.3959 | C(II) 0.00445    |
| сс                 | 0.1392 | 0.5113 | C(III) - 0.00867 |

表 4 Nb@Can的几何参数(nm)、重叠布居和 Mulliken 电荷分布

由表 4 的 Mulliken 电荷分布可看出,Nb@C<sub>40</sub>\*中正电荷主要集中在 Nb 原子上,C<sub>40</sub>笼上电荷为 -0.1929,表明 Nb 上部分负电荷向 C<sub>40</sub>笼转移了.这和 Pitzer<sup>[12]</sup>等计算的 Hf@C<sub>28</sub>的结果相似,Pitzer<sup>[12]</sup>等的计算结果表明 Hf@C<sub>28</sub>中 Hf 上电荷为 +0.16,即 C<sub>28</sub>笼上带 0.16 个负电荷.计算得到 Nb @ C<sub>40</sub>\*中,中心的 Nb 原子与6个 C( $\square$ )原子组成的六边形中心距离为 0.1975nm,表明 Nb 与 C<sub>40</sub>笼有一定的相互作用,加入 Nb 原子对 C<sub>40</sub>笼的影响可从 C<sub>40</sub>笼中各类碳原子与中心距离及电荷分布的变化来看出,Nb 加入后,C( $\square$ )两类原子距中心距离均减小了(分别由 0.3216nm,0.2829nm 变为 0.3184nm 和 0.2821nm).而 C( $\square$ )原子距中心距离则由 0.2967nm 变为 0.3004nm;从电荷分布来看,C( $\square$ ),C( $\square$ ),C( $\square$ ) 三类原子电荷均发生了正负号的改变,分别由0.03246,-0.01086,0.00002变为 -0.00955,0.00445和 -0.00867,从 C<sub>40</sub>( $T_d$ )和 Nb@C<sub>40</sub>的平均结合能分别为 5.069eV/atom 和 4.771eV/atom 及表 7结合能数据可看出 Nb 加入使 C<sub>40</sub>稳定性降低了.在实验上,内含型金属碳笼确实比碳笼更难得到.

### 2.3 NbC<sub>39</sub><sup>+</sup>

和内含的金属碳笼不同,近来  $Jarrold^{[5\sim 9]}$ 等在实验上又得到了金属在碳笼骨架上的骨架型金属碳笼  $NbC_n(n>29)$ ,  $LaC_n(n>35)$  (其中 n 为奇数).而且实验表明  $MC_{2n-1}^+$ 比  $M@C_{2n}^+$  (M=Nb, La) 更稳定一些[7,8]. 因此我们又研究了  $NbC_{39}^+$ .

|     | 键长     | 重叠布居    | 电荷         |     | 键长     | 重叠布居   | 电荷       |
|-----|--------|---------|------------|-----|--------|--------|----------|
| NbC | 0.2072 | 0.3406  | Nb 0.3811  | с—с | 0.1510 | 0.4160 | C 0.0292 |
| с—с | 0.1412 | 0.4695  | C 0.0683   | с-с | 0.1408 | 0.4870 | C 0.0281 |
| c—c | 0.1458 | 0.4080  | C - 0.0162 | с—с | 0.1521 | 0.3973 |          |
| cc  | 0.1450 | 0.4561  | C 0.0079   | с-с | 0.1380 | 0.5138 |          |
| c—c | 0.1442 | 0.4547  | C -0.0109  | с-с | 0.1513 | 0.3972 |          |
| c—c | 0.1459 | 0.4399  | C 0.0016   | с—с | 0.1358 | 0.5354 |          |
| c—c | 0.1417 | 0.48224 | C 0.0157   |     |        |        |          |

表 5 NbC $_{39}^+$ ( $C_{3v}$ )的几何参数(nm)、重叠布居和 Mulliken 电荷分布。

从表 3 可看出, $C_4$ 0( $C_{3v}$ )中有一个碳原子上自旋密度特别大(为 0.9847),这个原子是向笼外突出的,即距中心最远的原子. 应是最易于被 Nb 取代而形成 NbC40的原子, Nb 取代其它碳原

子对碳笼整体结构破坏性更大,所以可能性较小.

计算的  $NbC_{39}^+$  ( $C_{3v}$ ) 具有  $^1A_1$  态,其 HOMO 为  $26a_1$ ,由 Nb 的 4d5 s和 C 的 2 p轨 道组成,LUMO 为 40e,由 Nb 的 4d5 p和 C2 p轨 道组成,HOMO – LUMO 能隙为 5.4445 eV.

NbC<sub>3</sub> 中 Nb 与其直接相连的三个 C 原子形成了三个 Nb—C 单键,键长 0.2072nm,重叠布居 0.3406;从电荷分布来看,与 Nb@ C<sub>40</sub>不同,NbC<sub>39</sub> 中 Nb 上电荷仅为 0.3811,其余正电荷被分散到了整个碳笼上.

NbC<sub>3</sub>, Nb @ C<sub>4</sub> 的平均结合能分别为4.858eV/atom, 4.771eV/atom, C<sub>4</sub> ( $T_d$ ) + Nb→Nb@C<sub>4</sub> 和 C<sub>4</sub> ( $T_d$ ) + Nb − C→NbC<sub>3</sub> 的结合能分别为 − 7.129eV 和 − 6.927eV.据此判断稳定性顺序应为 NbC<sub>3</sub> > Nb@C<sub>4</sub>, 这一计算结果与实验证明的 MC<sub>2n-1</sub>比 M@C<sub>2n</sub>比更稳定的结果是相符的<sup>[7,8]</sup>.

#### 2.4 Nb@C40H4+

为了解  $C_{40}$  笼内含金属同时外接氢时  $C_{40}$  笼的变化情况,我们进一步研究了  $Nb@C_{40}H_4^+$ ,计算的  $Nb@C_{40}H_4^+$  的电子态为  $^1A_1$ ,HOMO 为 10e 轨道,由 Nb 4d 和 C 2p 轨道组成,LUMO 为  $10a_1$ ,由 Nb5s 和 C2s2p,H1s 轨道组成,HOMO — LUMO 能隙为 7.517eV.和  $C_{40}$  相比,  $Nb@C_{40}H_4^+$  中三类碳原子离中心距离都增大了 (分别由 0.3216nm, 0.2967nm, 0.2829nm 变为 0.3322nm, 0.2983nm, 0.2836nm). 从电荷分布来看,Nb 上电荷为 +0.9994,比  $Nb@C_{40}$  中 Nb 上正电荷 (+1.1929) 要小;H 上电荷为 +0.1079,比  $C_{40}H_4$  中 H 上电荷 (+0.0744) 要大,整个  $C_{40}$  笼上带 — 0.4310 电荷,和  $C_{40}$  笼 相比,三类碳原子的电荷也发生了正负号的改变(见表6). 由表7可看出在  $Nb@C_{40}$  上引入 H,稳定性升高  $(4H+Nb@C_{40}^+ \to Nb@C_{40}^+ H_4^+$  结合能 22.99eV);在  $C_{40}$   $H_4^+$   $(T_d)$  中加入 Nb,稳定性降低  $[Nb+C_{40}H_4^+$   $(T_d)$  → Nb  $@C_{40}H_4^+$  结合能 -3.536eV ];在  $C_{40}^+$  中心加入  $C_{40}^+$   $C_{$ 

|     | 键长     | 重叠布居   | 电荷             |
|-----|--------|--------|----------------|
| с—с | 0.1527 | 0.3793 | Nb 0.9994      |
| CC  | 0.1414 | 0.4938 | C(I) -0.0621   |
| c—c | 0.1531 | 0.3891 | C(II) 0.0032   |
| c—c | 0.1414 | 0.4908 | C(III) -0.0092 |
| с—н | 0.1094 | 0.3723 | Н 0.1079       |

表 6 Nb@CaHt 的几何参数(nm)、重叠布居和 Mulliken 电荷分布.

表 7 结合能(BE)(单位 eV)

|                                                       | BE *   | BE                                                              |         |
|-------------------------------------------------------|--------|-----------------------------------------------------------------|---------|
| 4H + C <sub>28</sub> → C <sub>28</sub> H <sub>4</sub> | 14.5   | $4H + C_{40}^{+}(T_{d}) \rightarrow C_{40}H_{4}^{+}(T_{d})$     | 19.399  |
| $Hf + C_{28} \rightarrow Hf@C_{28}$                   | -0.408 | $Nb + C_{40}^+(T_d) \rightarrow Nb @ C_{40}^+$                  | - 7.129 |
| $4H + Hf@C_{28} \rightarrow Hf@C_{28}H_4$             | 4.17   | 4H + Nb@ C <sub>40</sub> → Nb@ C <sub>40</sub> H <sub>4</sub> + | 22.99   |
| Hf + $C_{28}H_4$ $\rightarrow$ Hf@ $C_{28}H_4$        | - 10.8 | $Nb + C_{40}H_4^+ (T_d) \rightarrow Nb@C_{40}H_4^+$             | - 3.536 |
| $4H + Hf + C_{28} \rightarrow Hf@C_{28}H_4$           | 3.76   | $4H + Nb + C_{40}^{+}(T_d) \rightarrow Nb@C_{40}H_4^{+}$        | 15.86   |

<sup>\*</sup> 为文献[12]中给出值.

#### References

- 1 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature, 1985, 162, 318.
- 2 Feng Ji Kang, Youji Huaxue, 1992, 12, 567; 1993, 13, 25 (in Chinese).
- 3 Feng Ji Kang, University Chemistry, 1995, 10,21 (in Chinese).
- 4 B. C. Guo, K. P. Kerns, A. W. Jr. Castleman, Science, 1992, 225, 1411.
- 5 David E. Clemmer, Joanna M. Hunter, Konstantin B. Shellmov, Martin F. Jarrold, Nature, 1994, 372, 248.
- 6 Konstantin B. Shellmov, David E. Clemmer, Martin F. Jarrold, J. Phys. Chem., 1994, 98, 12819.
- 7 David E. Clemmer, Martin F. Jarrold, J. Am. Chem. Soc., 1995, 117, 8841.
- 8 Konstantin B. Shellmov, David E. Clemmer, Martin F. Jarrold, J. Phys. Chem., 1995, 99, 11376.
- 9 Konstantin B. Shellmov, David E. Clemmer, Martin F. Jarrold, J. Chem. Soc., Dalton Trans., 1996, 567.
- 10 Oliver D. Haberlen, Notker Rosch, Brett I. Dunlap, Chem. Phys. Lett., 1992, 200, 418.
- 11 Ting Guo, Richard E. Smalley, Gustavo E. Scuseria, J. Chem. Phys., 1993, 99, 352.
- 12 Debbie Fu Tai Tuan, Russell M. Pitzer, J. Phys. Chem., 1996, 100, 6277.
- 13 Feng Ji Kang, Tian Wei Quan, Teng Qi Wen, Sun Jia Zhong, Chem. J. Chinese Univ., 1995, 16, 1265 (in Chinese).
- 14 Feng Ji Kang, Tian Wei Quan, Teng Qi Wen, Sun Jia Zhong, Acta Chimica Sinica, 1996, 54, 644 (in Chinese).
- 15 P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.

# Quantum Chemical Study of $C_{40}$ , $C_{40}^+$ , $Nb@C_{40}^+$ , $NbC_{39}^+$ , $Nb@C_{40}H_4^+$

GE Mao – Fa FENG Ji – Kang\* Cui Meng Wang Su – Fan

TIAN Wei – Quan HUANG Xu – Ri LI Zhi – Ru

(The National Key Laboratory of Theoretical and Computational Chemistry

The Key Laboratory for Supramolecular Structure and Spectroscopy, Jilin University, Changchun, 130023)

Abstract Ab initio Hartree – Fock calculations were performed on the equilibrium geometries and electronic structures of a series of endohedral, exohedral and endohedral – exohedral complexes of  $C_{40}$ . The  $C_{40}(T_d)$  cage is found to have four unpaired electrons with a  $^5A_2$  open – shell ground state and have four dangling bonds.  $C_{40}(T_d)$  behaves as a sort of hollow superatom with an effective valence of 4, both toward the outside and inside of the carbon cage, so it is possible to form the endohedral metallofullerene Nb@  $C_{40}$ , exohedral complex  $C_{40}H_4$  and endohedral – exohedral complex Nb@  $C_{40}H_4$  from  $C_{40}$ . From the values of binding energies per atom, it's found that  $C_{40}(T_d)$  is more stable than  $C_{40}(C_{3v})$ , while  $C_{40}^+(C_{3v})$  is more stable than  $C_{40}^+(T_d)$ . In networked metallofullerenes Nb $C_{39}^+$ , Nb is connected directly with three carbon atom, forming three Nb – C single bonds with the Nb atom protruding from the surface of the carbon cage. Our Calculated results show that  $C_{40}$  and  $C_{40}^+$  are more stable than Nb $C_{39}^+$ , and Nb $C_{39}^+$  is more stable than Nb $C_{40}^+$ . The results are consistent with the experimental results. Through the comparison of the  $C_{40}$  series clusters with the  $C_{28}$  and related compounds, we have found that there are many similarities between  $C_{40}$  and  $C_{28}$ . Our calculated results may shed light on other endohedral and exhedral complexes of fullerenes and networked type metallofullerenes in general.

**Keywords** Nb@C<sub>40</sub>, NbC<sub>39</sub>, Nb@C<sub>40</sub>H<sub>4</sub>, electronic structure