Acta Chim. Sinica ›› 2017, Vol. 75 ›› Issue (11): 1061-1070.DOI: 10.6023/A17070342 Previous Articles     Next Articles

Special Issue: 纳米传感分析



王咏婕, 王伟   

  1. 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210023
  • 投稿日期:2017-07-27 发布日期:2017-09-18
  • 通讯作者: 王伟
  • 作者简介:王咏婕,博士研究生,2015年毕业于南京大学化学化工学院,获得理学学士学位.从2015年9月起在南京大学化学化工学院生命分析国家重点实验室硕博连读,导师为王伟教授.主要研究兴趣为表面等离激元共振显微成像等;王伟,南京大学化学化工学院教授、博士生导师.2004年和2009年分别从中国科学技术大学化学系获得理学学士和分析化学博士学位.2009~2013在美国亚利桑那州立大学从事博士后研究.2013年11月入选国家"青年千人计划",2013年12月起任南京大学教授.2015年获得国家自然基金委优秀青年基金和江苏省杰出青年基金.主要研究领域包括光学显微成像技术、单细胞和单分子分析检测等,致力于发展表面等离激元共振显微镜这一新兴光学成像技术的基础理论及其在单细胞成像和纳米电化学领域的分析应用.
  • 基金资助:


Single Nanoparticle Sensing Based on Optical Microscopy

Wang Yongjie, Wang Wei   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
  • Received:2017-07-27 Published:2017-09-18
  • Contact: 10.6023/A17070342
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21527807).

Single nanoparticle sensing (SNS) is an emerging research field which utilizes single nanoparticles as individual nano-sensors to acquire the qualitative and quantitative information of the analytes in a localized and microscopic sample environment. Both the molecular recognition and signal transduction take place at the surface of a single nanoparticle. Versatile kinds of optical microscopy, such as dark-field microscopy and fluorescence microscopy, are often applied to locating the nano-sensor, and to accessing and analyzing the optical signal it reports. Compared to traditional sensing mechanisms that rely on ensemble nanomaterials, SNS has demonstrated its excellent sensitivity down to single molecule detection by focusing in extremely small volumes in the range of aL~pL. Simultaneous monitoring on many individual nano-sensors in a nano-array further allows for high-throughput and multiplex analysis. More importantly, single nanoparticles can be easily introduced to microscopic and dynamic systems such as living cells to probe specific analytes with high temporal and spatial resolution while maintaining the excellent sensitivity. In this review, we begin with a brief introduction on the history and development of SNS, which is followed by its major features. We subsequently survey the recent progresses in this field in the past five years, focusing on the different sensing principles, single nanoparticle counting and single nanoparticle tracking. We finally provide our perspectives that further developments on nano-probes, optical imaging techniques and data analysis are critical to the growth and applications of SNS in broad fields.

Key words: nano-sensor, imaging analysis, single nanoparticle counting, dark-field microscopy, fluorescence microscopy