Acta Chimica Sinica ›› 2012, Vol. 70 ›› Issue (03): 291-296.DOI: 10.6023/A1110013 Previous Articles     Next Articles

Full Papers


胡敬芳a,b, 孙楫舟a, 边超a, 佟建华a, 李洋a,b, 夏善红a   

  1. a 中国科学院电子学研究所 传感技术国家重点实验室 北京 100080;
    b 中国科学院研究生院 北京 100080
  • 投稿日期:2011-10-28 修回日期:2011-11-18 发布日期:2011-11-30
  • 通讯作者: 夏善红
  • 基金资助:

    国家重点基础研究发展计划(973 计划, No. 2009CB320300)、国家水体污染控制与治理科技重大专项课题(No. 2009ZX07527-007)和国家自然科学基金(No. 60971070)资助项目.

Study on Micro-sensing Chip of Nitrate Based on Three-dimensional Nano-structured Silver Modified Electrode

Hu Jingfanga,b, Sun Jizhoua, Bian Chaoa, Tong Jianhuaaa, Li Yanga,b, Xia Shanhonga   

  1. a State Key Laboratory of Transducer Technology, Institute of Electronics/Chinese Academy of Sciences, Beijing 100080;
    b Graduate University of Chinese Academy of Sciences/Beijing 100080
  • Received:2011-10-28 Revised:2011-11-18 Published:2011-11-30
  • Supported by:

    National Basic Research Program of China (973 Program) (No. 2009CB320300), National Water Pollution Control and Management Technology Major Projects (No. 2009ZX07527-007) and the National Natural Science Foundation Program of China (No. 60971070).

A new type of micro amperometric sensing chip based on gold interdigitated microband array (IDA) electrode for trace nitrate determination was developed in this paper. The IDA as working electrode was fabricated with micro-electro-mechanical systems (MEMS) technology. Three-dimensional (3D) nano-structured dendritic silver was electrochemically deposited on the IDA electrode surface, which showed superior electrocatalytic reduction of nitrate than silver nanoparticle modified IDA and regular silver wire electrode. The experiment results demonstrated that the proposed chip showed high sensitivity (9.5 nA/(μmol/L), within a concentration range of 25~1000 μmol/L (R2=0.9998) and low detection limit (10 μmol/L) using square-wave voltammetry method. Interference analysis with 8 kinds of ions ( NO2-, F-, PO43- , SO42- , CO32- , NH4+ , Na+and K+) commonly found in surface water indicated that the microchips in this paper had good selectivity to NO3- . It was noteworthy that the 3D nano-structured dendritic silver as sensing film modified on IDA electrode could electrochemically reduce nitrate at a pH range of 5.0~9.0 which is important for further study of field and real-time monitoring nitrate ions in natural water.

Key words: three-dimensional (3D) nano-structured silver, interdigitated microband array (IDA) electrode, natural water environment, nitrate determination