Acta Chim. Sinica ›› 2017, Vol. 75 ›› Issue (7): 708-714.DOI: 10.6023/A17030107 Previous Articles     Next Articles

Article

H2分子在Mg3N2表面吸附的第一性原理研究

陈玉红a,b, 刘婷婷a,b, 张梅玲b, 元丽华b, 张材荣a,b   

  1. a 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050;
    b 兰州理工大学理学院 兰州 730050
  • 收稿日期:2017-03-16 出版日期:2017-07-15 发布日期:2017-04-25
  • 通讯作者: 陈玉红 E-mail:chenyh@lut.cn
  • 基金资助:

    国家自然科学基金(No.51562022)、省部共建有色金属先进加工与再利用国家重点实验室开放基金(No.SKLAB02014004)、甘肃省高校基本科研业务费项目(No.05-0342)和NSFC-广东联合基金(第2期)超级计算科学应用研究专项资助项目.

First Principles Study on the Adsorption of H2 Molecules on Mg3N2 Surface

Chen Yuhonga,b, Liu Tingtingaa,b, Zhang Meilingb, Yuan Lihuab, Zhang Cairongaa,b   

  1. a State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
    b School of Science, Lanzhou University of Technology, Lanzhou 730050
  • Received:2017-03-16 Online:2017-07-15 Published:2017-04-25
  • Contact: 10.6023/A17030107 E-mail:chenyh@lut.cn
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No.51562022),the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology (No.SKLAB02014004),Basic scientific Research foundation for Gansu University of China (No.05-0342),Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).

The first principles density theory calculations have been performed to investigate different Mg3N2 surface and the corresponding properties of H2 adsorption.The calculation of surface energy present that Mg3N2(011) is the most stable surface.The result show that the H2 parallel to the surface is a favorable adsorption and the most stable structure is H2 adsorbed onto the Model Ⅱ surface,which have the lowest energy.There are three main modes of chemical adsorption:The first adsorption mode is that H2 is dissociated into two H,and each H connect with N atom respectively to form double NH.This is the best adsorption model,which mainly results from the interaction between the H 1s orbit and N 1s,2p orbits.By the analysis of the charge distribution variation H atom and N atom lose electrons,Mg obtain electrons.The second mode,H2 dissociated partly and the two H are adsorbed onto the same N forming one NH2,forms covalent bond.From the analysis of the bond population,we conclude that the covalent bonds strengthen the structure of NH.In other words,the hydrogen desorption of NH2 is easier than NH.H2 is fully dissociated in the third mode.One H atom is adsorbed onto N forming a NH group,which is connected by covalent bond,while the other H atom is adsorbed onto Mg forming MgH,which is forming ionic bond.The reaction energy barrier show that there is no competition among the three adsorption modes.The model of forming two NH is the easiest pathway,which have the lowest reaction energy barrier of 0.848 eV.The second is that the adsorption of H2 molecules on the surface forming NH2 have the reaction energy barrier of 1.596 eV.The most unlikely adsorption model is that H2 is dissociated and forming the structure of NH+MgH,which have the reaction energy barrier of 5.495 eV.In addition,H2 also can be physically adsorbed onto Mg3N2(011) surface.

Key words: density functional theory, Mg3N2, adsorption, H2