气液色谱法研究醇类在芳烃中的缔合溶液热力学

郑国康* 周效贤 王立峰 蔡 晔 刘 平 (兰州大学化学系, 兰州, 730000)

用气液色谱法测量了不同温度下 C_1 — C_4 醇类的各异构物在二苯甲烷、联苄、二苯乙炔、二苯甲酮及二苯亚砜中的无限稀活度系数 γ_3 、偏摩尔过量焓 $\overline{D_1^0}$ 及偏摩尔过量熵 $\overline{S_1^0}$.

用 Kretschmer-Wiebe 模型计算各醇类在二苯甲烷、联苄、二苯乙炔中的自身缔合常数 K_A ,得到在同一溶剂中, C_1 — C_4 醇类, K_A 减小次序。用同一模型计算各醇类在二苯甲酮、二苯亚砜中的交叉缔合常数 K_{AB} ,得到在同一溶剂中, K_{AB} 减小次序。

前文 $^{C1-27}$ 报道了用气液色谱法测量了 C1 — C4 醇类的各种异构物在 C16 — C28 正构 烷 烃 中的无限稀活度系数 $^{\gamma_i}$,并用 Kretschmer — $^{Wiebe}(KW)$ 模型 C37 处理各体系的 $^{\gamma_i}$,得到醇类的自身缔合常数 C4 。本文是前文的继续和深入,测量在不同温度下 C4 — C4 醇类在惰性芳烃二苯甲烷、联苄、二苯乙炔以及活性芳烃二苯甲酮、二苯亚砜中的无限稀活度系数 $^{\gamma_i}$ 、偏摩尔过量焓 C6 ,偏摩尔过量熵 C6 ,用 C6 ,所 C6 模型计算各醇类在惰性芳烃中的 C4 ,进而计算各醇类在活性 芳烃中的交叉缔合常数 C4 C4 C4

实 验

试剂 二苯甲烷、联苄、二苯乙炔、二苯甲酮、二苯亚砜均同文献[4],使用前重结晶一次。 醇类同文献[1],使用前用氯化钙干燥,加镁粉回流 1h,蒸馏一次。

仪器与操作 同文献[1],以峰面积重心出现的时间(一阶原点矩)为保留时间。

数据处理

 γ_i 、 $\overline{H}_i^{\text{II}}$ 和 S_i^{II} 的计算方法见文献[1].

KW 模型假设组分 A(醇类)和 B(芳烃)构成的二元溶液存在着下列二种平衡

$$A_{i} + A_{1} \stackrel{K_{A}}{\longleftrightarrow} A_{i+1}$$

$$A_{i} + B \stackrel{K_{AB}}{\longleftrightarrow} A_{i}B$$

缔合常数被定义为

$$K_{\text{A}} = \frac{C_{i+1}}{C_{i} \cdot C_{1}} \cdot \frac{1}{V_{\text{A}}^{*}} = \frac{\phi_{i+1}}{\phi_{i} \cdot \phi_{1}} \cdot \frac{i}{i+1}$$

$$K_{\text{AB}} = \frac{C_{i\text{B}}}{C_{i} \cdot C_{\text{B}}} \cdot \frac{1}{V_{\text{B}}^{*}} = \frac{\phi_{i\text{B}}}{\phi_{i} \cdot \phi_{\text{B}}} \cdot \frac{i\rho}{i+\rho}$$

 ϕ_i 为"真正组分"中 δ 聚合体的体积分数, V_A^* , V_B^* 为纯组分 A, B 的摩尔体积, $\rho = V_B^*/V_A^*$

1990年9月3日收到。国家自然科学基金资助的课题。

根据 KW 模型,并引进 Hildebrand-Scatchard 的溶质与溶剂的物理相互作用项,可推得组分 A 在无限稀条件下的活度系数 γ_A 为:

$$\ln \gamma_{\mathbf{A}} = \ln \frac{1}{(K_{\mathbf{A}\mathbf{B}} + \rho)\phi_{\mathbf{A}_{1}}^{\circ}} + \left(1 - \frac{1}{\rho}\right) - K_{\mathbf{A}}\phi_{\mathbf{A}_{1}}^{\circ} + \frac{\beta V_{\mathbf{A}}^{\bullet}}{RT} \tag{1}$$

若 $K_{AB}=0$, 式(1) 成为

$$\ln \gamma_{\rm A} = \ln \frac{1}{\rho \phi_{\rm A}^{\circ}} + \left(1 - \frac{1}{\rho}\right) - K_{\rm A} \phi_{\rm A_1}^{\circ} + \frac{\beta V_{\rm A}^{*}}{RT}$$
 (2)

式中 ϕ_A^{α} , 为纯组分 A 中单体 A₁ 所占的体积分数, 与 K_A 有关,

$$\phi_{A_1}^{\circ} = \frac{1 + 2K_A - \sqrt{1 + 4K_A}}{2K_A^2}$$
 $\beta = (\delta_A - \delta_B)^2$

 δ_A , δ_B 分别为组分 A, B 的溶解度参数.

含有惰性芳烃的体系,按式(2)来处理; 含有活性芳烃的体系,按式(1)来处理. 计算中所需的溶解度参数数据,见文献[1]和[4].

结果与讨论

热力学函数 在不同温度下, 测得的 C_1 — C_4 醇类在各芳烃中的 γ_1 、 \overline{H}_1^p 、 \overline{S}_1^p 及其标准偏差 列于表 1 至表 5.

部 城	308.2 K		313.2 K		318.2 K		323.2 K		\overline{H}_{i}^{E}	$\bar{\mathcal{S}}_{i}^{E}$
	7/1	$K_{\mathbf{A}}$	γ'n	$K_{\mathbf{A}}$	$\gamma_{\mathbf{i}}$	$K_{\mathbf{A}}$	$\gamma_{\mathbf{i}}$	$K_{\mathbf{A}}$	(kJ·mol ⁻¹)	$(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$
甲醇	12.7	33.9	11.5	30.2	10.5	27.1	9.54	24.1	15.6±0.2	29.5±0.7
Z #	11.5	21.4	10.4	19.0	9.45	16.7	8.65	15.0	15.8±0.2	31.1±0.5
正均數	9,36	12.3	8.70	11.2	8.00	10.0	7.40	9.01	13.1±0.3	23.7±1.1
异内醇	9.29	11.1	8.57	9.95	7.92	8.95	7.32	8.04	13.2±0.1	24.2±0.2
111 J W	9,13	9.14	8.32	8.08	7.52	7.03	6.92	6.26	15.4±0.3	31.7 ± 1.0
是工作	8.70	5.58	7.95	4.92	7.23	4.27	6.62	3.73	15.2 ± 0.2	31.3±0.7
仲丁醇	6.88	5.47	6.30	4.81	5.76	4.21	5.82	3.72	14.2±0.2	30.1±0.5
权门项	7.46	5.88	6.86	5.21	6.27	4.55	5.71	3.93	14.8±0.4	31.1 ± 1.4

表 1 C_1 — C_4 各醇在二苯甲烷中的 γ_i 、 K_A 、 \overline{H}_i^E 、 \overline{S}_i^E 及其标准偏差

从表1至表3可以看到,各醇类在二苯甲烷、联苄、二苯乙炔中的 γ,依下列次序减小。

甲醇>乙醇>正丙醇>正丁醇;

正丙醇>异丙醇;

正丁醇~异丁醇>叔丁醇>仲丁醇.

 $C_1 - C_2$ 醇类与在正构烷烃中的次序 $^{(1)}$ 完全相同, C_4 醇类与在正构烷烃中的次序稍量。

各醇类在二苯甲烷、联苄、二苯乙炔中的 \overline{H}_{i}^{p} 和 \overline{S}_{i}^{p} 均为正值. 正的 \overline{H}_{i}^{p} 值反映出在无限 稀条件下,醇类的缔合结构发生断裂; 正的 \overline{S}_{i}^{p} 值亦表明醇类的缔合结构发生断裂, 无序度提高. 所测的 S_{i}^{p} 值有随 \overline{H}_{i}^{p} 值增大而增大的趋势.

各醇类在芳烃中的 Π_{i}^{F} 值均较在烷烃中为低,这可解释为醇类裸露的羟基质子,在芳烃 π 电子云中找到一个降低能量的环境,导致羟基溶剂化的发生. 在二苯乙炔中, Π_{i}^{F} 更进一步降低,是由于二苯乙炔具有更多的 π 电子.

溶 质	328.2 K		333.2 K		338.2 K		343.2K		$\overline{H}_{1}^{\mathrm{E}}$	$\overline{\mathcal{S}}_{i}^{\mathbf{E}}$
	$\gamma_{\mathbf{i}}$	$K_{\mathbf{A}}$	γi	KA	γi	$K_{\mathbf{A}}$	γi	KA	(kJ·mol ⁻¹)	(J·mol-1·K-1)
甲醇	8.66	24.4	7.91	21.7	7.24	19.4	6.58	17,1	17.1±0.3	34.2±0.9
乙醇	8.18	15.9	7.47	14.1	6.86	12.6	6.38	11.4	15.6±0.4	30.0±1.3
正丙醇	7.00	9.66	6.49	8.69	6.00	7.78	5.57	6.98	14.3±0.1	27.5±0.4
异丙醇	6.96	8.72	6.42	7.77	5.89	6.85	5.47	6.13	15.2±0.2	30.3±0.6
正丁醇	6.60	6.84	6.05	6.03	5.65	5. 4 5	5.21	4.82	14.5±0.4	28.6±1.2
异丁醇	6.49	4.42	5.93	3.84	5.52	3.43	5.10	3.00	14.9±0.4	29.9±1.1
仲丁醇	5.32	4.45	4.92	3.94	4.60	3.53	4.28	3.12	13.5±0.2	27.3±0.6
叔丁醇	5.60	4.56	5.14	3.97	4.79	3.53	4.44	3.10	14.4±0.3	29.6±1.0

表 C_1-C_4 各 存在 联节中的 γ_1 、 K_A 、 \overline{H}_1^E 、 \overline{S}_1^E 及其标准偏差

表 C_1-C_4 各 存在二苯乙炔中的 γ_i 、 K_A 、 \overline{H}_i^E 、 \overline{S}_i^E 及其标准偏差

溶质	338.2 K		343.2K		348.2K		353.2K		\overline{H}_{1}^{p}	$\overline{S}_i^{oldsymbol{E}}$
	γi	KA	γi	$K_{\mathbf{A}}$	γ_1	$K_{\mathbf{A}}$	γi	$K_{\mathbf{A}}$	(kJ·mol⁻¹)	$(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$
甲醇	7.64	18.8	7.13	17.2	6.78	16.2	6.39	15.0	11.6±0.4	17.4±1.3
乙醇	6.90	11.4	6.44	10.4	6.06	9.56	5.70	8.79	12.6±0.2	21.2 ± 0.5
正丙醇	5.94	6.79	5.55	6.16	5.27	5.71	4.98	5.23	11.6±0.4	19.5 ± 1.0
异丙醇	5.92	6.07	5.54	5.50	5.21	5.00	4.91	4.57	12.4±0.1	21.9 ± 0.4
正丁醇	5.72	4.83	5.32	4.32	4.97	3.89	4.69	3.54	13.2±0.3	24.5 ± 0.9
异丁醇	5.70	3.02	5.33	2,70	5.00	2.42	4.71	2.18	12.6±0.1	22.8 ± 0.2
仲丁醇	4.61	3.01	4.35	2.72	4.12	2.48	3.92	2.27	10.8±0.2	19.1±0.5
叔丁醇	4.91	3.13	4.64	2.84	4.39	2.58	4.14	2.31	11.3±0.2	20.2±0.7

表 4 C_1 — C_4 各醇在二苯甲酮中的 γ_i 、 \overline{H}_i^E 、 \overline{S}_i^E 及其标准偏差

溶质			$\overline{H}_{i}^{\mathrm{c}}$	S _i e			
HA DI	323.2 K	328.2 K	333.2K	338.2 K	(kJ·mol-1)	(J·mol-1·K-1)	
甲醇	4.03	3.92	3.85	3.76	4.1±0.2	1.1±0.5	
乙醇	4.11	4.03	3.92	3.82	4.5±0.3	$2.2 {\pm} 0.8$	
正丙醇	3.72	3.63	3.54	3.45	4.5±0.1	3.1±0.3	
异丙醇	4.00	3.89	3.80	3.69	4.9±0.1	3.7±0.4	
正丁醇	3.70	3.58	3.47	3.37	5.7 ± 0.1	6.7 ± 0.3	
异丁醇	3.65	3.54	3.44	3.32	$5.6 {\pm} 0.2$	6.6±0.5	
仲丁醇	3.26	3.19	3.12	3.06	3.8±0.1	2.1±0.2	
叔丁醇	3.70	3.57	3.49	3.41	4.9±0.3	4.4±0.9	

从表 4 和表 5 可以看到,各醇类在二苯甲酮和二苯亚砜中 γ_1 的大小毫无规律,与在惰性 芳烃中的次序完全不同.

各醇类在二苯甲酮中的 **G**^F 和 **S**^F 仍为正值,较在前三种惰性芳烃中显著降低,反映出二苯甲酮中的 C—O 基团与醇类羟基中的质子产生强烈的氢键缔合,部分抵消了醇类自身缔合结构断裂的热效应;醇类分子受到溶剂分子的约束,无序程度也降低.

各醇类在二苯亚砜中的 \overline{B}_{i}^{p} 和 \overline{S}_{i}^{p} 为负值,反映出二苯亚砜中的 S=O 基团与醇类羟基中的质子产生更强烈的氢键缔合,醇类分子受到溶剂分子更大的约束,有序度显著增加.

缔合常数 按式(2) 算得的醇类的 K 列于表 1—3. 从表 1—3 可以看到, K 的排列次序

溶质		2	$\overline{H}_{f i}^{ m E}$	$ar{\mathcal{S}}_{-}^{R}$		
	344.2K	348.2K	351.2K	354.2K	(kJ⋅mol ⁻¹)	$\langle J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \rangle$
甲 醇	1.367	1.374	1.380	1.385	-1.34×0.03	-6.49 ± 0.08
乙醇	1.573	1.575	1.577	1.579	-0.39±0.02	-4.89 ± 0.06
正丙醇	1.523	1.529	1.534	1.538	-1.00 ± 0.02	-6.41 ± 0.07
异丙醇	1.784	1.785	1.787	1.789	-0.29 ± 0.05	-5.64 ± 0.13
正丁醇	1.606	1.610	1.614	1.616	-0.65 ± 0.05	-5.83 ± 0.14
异丁醇	1.595	1.596	1.598	1.599	-0.27 ± 0.04	-4.65 ± 0.10
仲丁醇	1.642	1.650	1.656	1.661	-1.17 ± 0.03	-7.54 ± 0.08
叔丁醇	1.940	1.948	1.951	1.956	-0.81 ± 0.07	-7.87 ± 0.19

 ± 5 C_1 — C_4 各醇在二苯亚砜中的 γ_1 , \overline{H}_1^E 、 \overline{S}_1^E 及其标准偏差

为:

甲醇>乙醇>正丙醇>正丁醇;

正丙醇>异丙醇:

正丁醇>叔丁醇>异丁醇~仲丁醇.

 C_1 — C_8 醇类的 K_A 与在正构烷烃中的次序^[2] 完全相同, 但在 C_4 醇类中, 叔丁醇提至异丁醇、仲丁醇前面.

在实验温度范围内,各种醇在三种惰性二苯环芳烃中的 $\ln K_{A}$ 与 1/T 呈线性关系,相关系数 r 均在 0.999 以上。 内插或外推得各醇在相同温度下的 K_{A} 诸值甚为接近,这一现象与醇类在正构烷烃中的 K_{A} " 值颇为相似。较为合理的解释是在芳烃中同一醇类 的 K_{A} 只 与 芳环的数目有关,而与碳原子数的关系不显著。在 333.2 K 下,各醇在三种芳烃中的 K_{A} 的平均值列于表 6,为了进行比较,醇类在 C_{16} — C_{28} 正构烷烃中 K_{A} 它" 的平均值也列于表 6.

甲醇 乙醇 正丙醇 异丙醇 正丁醇 异丁醇 仲丁醇 叔丁醇 62.193.8 41.4 33.0 31.8 26.218.6 C16-C28 正构 烷烃 16.8 惰性二苯环芳烃 20.6 12.97.867.03 5.453.38 3.40 3.52

表 $\boldsymbol{6}$ 333.2K 下各醇 K_A 的平均值

从表 6 可以看出, 各醇的 K_A 在惰性二苯环芳烃中较在正构烷烃中显著降低, 表明单体醇分子在芳烃中较在烷烃中稳定.

根据同态(homomorph)概念,取在同一温度下各醇在二苯甲烷、联苄、二苯乙炔中的 K_A 的平均值,作为处于该温度下具有二苯环的芳烃的 K_A 数值,进而按式(1)算得二苯甲酮、二苯亚砜的 K_{AB} . 例如,在 348.2 K 下各醇的 K_{AB} 值列于表 7.

表了	348.2 K	下各醇	与活性	生溶剂的	K_{AB} 值

	甲醇	乙醇	正丙醇	异丙醇	正丁醇	异丁醇	仲丁醇	叔丁醇
$K_{\mathbf{A}}$	15.4	9.53	5.92	5.17	3.93	2.38	2.46	2.51
$K_{AB}(二苯甲酮)$	3.63	2.06	1.51	1.21	1.12	1.08	0.79	0.65
K_{AB} (二苯亚砜)	15.8	8.33	5.74	4.38	3.95	3.83	2.76	2.18

从表7可以看到,在二苯甲酮和二苯亚砜中, K_{AB} 的排列次序为 甲醇>乙醇>正丙醇>正丁醇;

正丙醇>异丙醇:

正丁醇>异丁醇>仲丁醇>叔丁醇.

前面提到,各醇类在二苯甲酮和二苯亚砜中的 γ_1 次序紊乱,但 K_{AB} 的排列次序竟和醇类在正构烷烃中 K_{A} 的排列次序^[29] 完全相同,即碳原子数的增加及支链度的增加,阻碍着醇类分子交叉缔合的形成。从式(1)可以看出,对于 γ_1 来说, K_{A} 与 K_{AB} 是两种互相抵消的因素,当两种因素可相比时,规则排列的 K_{A} 和 K_{AB} 会导致不规则排列的 γ_1 .

从表7还可看到,同一种醇在二苯亚砜中的 K_{AB} 与该种醇在惰性二苯环芳烃中的 K_{A} 颇为接近,揭示了自身缔合与交叉缔合互相争夺处于相互匹敌的地位,导致醇类在二苯亚砜中的 活度系数较其它芳烃大大降低.

参考文献

- [1] 裘利言,郑国康,周效贤, 物理化学学报, 1989, 5, 163.
- [2] 郑国康, 裘利言, 周效贤, 物理化学学报 1989, 5, 168.
- [3] Kretschmer, C. B.; Wiebe, R., J. Chem. Phys., 1954, 22, 1697.
- [4] 郑国康,朱艳,周效贤,陈武锋,高等学校化学学报,1988,9,814.

Thermodynamic Study of Associated Solutions of Alcohols in Aromatics by Gas-Liquid Chromatography

Zheng, Guo-Kang* Zhou, Xiao-Xian Wang, Li-Feng Cai, Hua Liu, Ping (Department of Chemistry, Lanshou University, Lanshou, 730000)

Abstract

The infinite dilution activity coefficients γ_i , partial molar excess enthalpies $\overline{H}_i^{\text{n}}$ and entropies $\overline{S}_i^{\text{n}}$ of C_1 — C_4 alcohols in inert solvents diphenyl-methane, dibenzyl and diphenylacetylene along with active solvents benzophenone and diphenylsulfoxide have been measured.

The values of γ_i in inert solvent decrease in the order:

methanol>ethanol>n-propanol>n-butanol;

n-propanol>isopropanol;

n-butanol ~ isobutanol > tert-butanol > sec-butanol.

but no regular order has been found in active solvent.

The activity coefficients have been treated by Kretschmer-Wiebe association model combining with a Hildebrand-Scatchard term. The self association constants K_{Λ} of alcohols in inert solvent decrease in the order:

methanol>ethanol>n-propanol>n-butanol;

n-propanol>isopropanol;

n-butanol>tert-butanol>isobutanol \sim sec-butanol.

At the same temperature, the values of K_A of each alcohol in the studied inert solvents are nearly equal. It can be safely assumed that each alcohol in the solvents which have two benzene rings are all having a common value K_A . In addition, using the average K_A in studied inert solvents, the cross association constant K_{AB} of alcohol with active solvent has been evaluated.

The values of K_{AB} decrease in the order:

methanol >ethanol >n-propanol >n-butanol;

n-propanol>isopropanol;

n-butanol>isobutanol>sec-butanol>tert-butanol.

It has been found that the associated ability of alcohol with diphenylsulfoxide is greater than with benzophenone.

On condition that the factor K_{AB} is comparable with K_A , the value of γ_i would be close to unity. And the irregular phenomenon of γ_i in active solvent can be given a satisfactory explanation.