两个新的海绵烷型二萜内酯

曾 陇 梅 ^a 官 智 ^a 苏 镜 娱 ^a 冯 小 龙 ^b 蔡 继 文 ^a (*中山大学化学与化学工程学院 ^b 中山大学分析测试中心 广州 510275)

摘要 从海绵 Spongiazimocca subspecies irregularia Lemdenfeld中分离到2个新的海绵烷型二萜(2),(3),依次命名为 zimoclactone B 和 zimoclactone C.应用 1D 和 2D NMR 和 Y 射线单晶衍射分析方法测定了这两个新二萜的化学结构及相对构型。

关键词 海绵,二萜,X 射线分析

Two New Spongian Diterpene Lactones

ZENG Long – Mei^a* GUAN Zhi^a SU Jing – Yu^a FENG Xiao – Long^b CAI Ji – Wen^a

(*School of Chemistry and Chemical Engineering, *bInstrumentation Analysis and Research Center,

Zhongshan University, Guangzheu, 510275)

Abstract Two new spongian diterpenes, named zimoclactone B (2) and zimoclactone C (3) were isolated from the marine sponge *Spongia zimocca subspecies irregularia*. Their chemical structures and relative configurations were determined mainly by 1D and 2D NMR experiments as well as X – ray diffraction analysis.

Keywords sponge, diterpene, X - ray analysis

Spongia 属海绵是被研究得最多的一种海绵,其次生代谢产物多种多样,主要有倍半萜,二萜、二倍半萜,大环内酯和甾醇等 1-5 . 迄今已发现的海绵烷(Spongian)型二萜约 40 多个 6-8 . 其中一些具有抗HSV-1型病毒和对 P388 白血病细胞有细胞毒活性 [9]. 作者曾从广西省涠洲岛海域采集的海绵 Spongia zimicca 中分离到一个新的 19 - 降海绵烷型二萜 zimoclactone A(1) [10], 最近我们在对采自海南省三亚附近海域的海绵 Spongia zimocca subspecies arregularia Lemdenfeld 的研究中,又分离到二个新的海绵烷型二萜,分别命名为 zimoclactone B(2)和 zimoclactone C(3). 它们具有中等程度的抗 P388 肿瘤细胞活性,本文报道新化合物 2 和 3 的分离和鉴

定工作.

1 实验部分

1.1 仪器与试剂

熔点测定用北京电子仪器厂 5X 熔点测定仪、温度计未校正. IR 用 NICOLET 5DX - FT 红外光谱仪.NMR 用 UNITY Inova 500 MHz 核磁共振仪(TMS作内标). MS 用 VG - ZAB - HS 质谱仪. X 光分析用Brucker Smart 1000 CCD X 射线单晶衍射仪. 硅胶和高效硅胶由青岛海洋化工厂生产.

1.2 实验生物材料

海绵 Spongia zimocca subspecies irregularia 采自海

收稿日期:2001-05-14,修回日期:2001-07-13,定稿日期:2001-08-13,国家自然科学基金(29932030)资助项目 (Received May 14, 2001, Revised July 13, 2001, Accepted August 13, 2001)

E ~ mail : reszlm@zsu. edu. cn

南省三亚海域、由中国科学院海洋研究所(青岛)李锦和教授鉴定。

1.3 提取与分离

海绵样品(干重,900 g)切碎后,用 95% 乙醇在室温下浸提 3 次,合并浸提液,减压浓缩,得棕褐色膏状物150g.此膏状残留物用V(氯仿):V(水)=1:1溶剂分配 3 次,合并氯仿溶液,减压浓缩,得褐色提取物 15 g.

氯仿提取物在硅胶上减压下层析、用乙酸乙酯 石油醚洗脱、将 V(乙酸乙酯): V(石油醚) = 20:80的洗脱部分减压浓缩后,用中性 Al_2O_3 层析,V(从内酮): V(正己烷) = 20:80 洗脱部分依次得 A,B 二组分,B 组分在高效硅胶柱上层析,乙酸乙酯/正己烷

梯度洗脱、从 V(乙酸乙酯): V(正己烷) = 35:65 洗脱部分得化合物 2 20 mg. <math>V(乙酸乙酯): V(正己烷) = 45:55 洗脱部分减压浓缩后,再在高效硅胶柱上层析,用甲醇/二氯甲烷梯度洗脱、从 <math>V(甲醇): V(二氯甲烷) = 1:9 洗脱部分得化合物 3 23 mg.

1.4 化合物 2 结构测定

无色柱状结晶(EtOH), m. p. 274 ~ 275℃, [α] $^{15}_{D}$ ~ 11. 0° (c 0. 011, EtOH), FABMS m/z; 333 [M + H] $^{+}$, 分子式 $C_{19}H_{24}O_{5}$ (计算值; C 68. 66, H 7. 28, O 24.07; 实测值; C 68. 43, H 7. 36, O 24. 21). IR ν_{max} ; 3474(s), 3339(s), 1665, 1750 cm $^{-1}$, 1 H 和 13 C NMR 数据见表 1.

表 1 化合物 2 的 1 H 和 13 C NMR 数据

Table 1 1H and 13C NMR data of compound 2

Nυ	å _H , ∫∕Hz	— ۸ _۱	"H = "H COSY	HMBC(H to C)
la	2.58,d,(16.5)	51 6(1)	H(1P)	C(2),C(10)
1b	2 16,d,(16.6)		Ht (a)	C(3)
2		192.5(4)		
3		ւ 44 ․1(ժ)		
4		(و (5. 129)		
5	2.52.dd,(10.0.2.0)	47 6(d)	H(bal, H) 6h)	C(4).C(10)
6 a	2.18,m	19 8(d)	H(6b, H)7a), H(7b)	
6b	1.82, ddd.(13.0,4.0,3.0)		$H(6a)_*H(7a)H(7b)$	
7a	2.27,m	30 2(4)	H(7b), H(6a), H(6b)	
7Ь	2.15, m		H(7a), H(na) H(6b)	
8		40.5(s)		
9	l.58, m	51.2(d)	H(11a), H(1)h	
10		40.0(s)		
lla	1 34,dd,(13.0,10.5)	20 5(1)	H(9), H(11b) H(12a), H(12b)	
HЬ	1.56, dd, (13.0, 2.5)		H(9), H(1(a), H(12a), H(12b))	
12	1.69,m	16/2(1)		C(13), C(14), C(16)
13		(29.5(s)		
14		169 2(s)		
15a	4.94,d,(17.5)	71 2(t)		C(14),C(13)
15b	4.74,d,(17.5)			C(14),C(13)
16		173.5(s)		
17a	3.82,d,(10.5)	62 8(t)		C(7), C(8), C(14)
17Ь	33.51,d,(10.5)			C(7), C(8), C(14)
18	1.79 ₄ s	12 7(գ)		C(3),C(4),C(5)
20	0.77,s	14 6(q)		C(1), C(10), C(9)

结晶学数据;属正交晶系;晶胞参数a=0.7347(7) nm,b=1.1056(10) nm,c=1.9484(18) nm;体积 1.582 7(3) nm³;晶体大小 0.01 nm × 0.10 nm × 0.40 mm;密度计算值(D_c)1.395 Mg·m⁻³;晶胞中分子数 Z=4; F(000)=712; 所用的 X 射线为 MoK α ,吸收系数 0.100 mm⁻¹.空间群 $P2_12_12_1$;最终偏离因子 $R_f=0.032$ 6. $R_W=0.035$ 9.

数据的处理使用 SAINT + 程序包^[11]、吸收校正使用 SADABS^[12]. 空间群根据系统消光确定,并由结构的精修结果验证.所有的结构均使用 SHELXTL 程序包^[13],由直接法解出,采用全矩阵/最小二乘法方

法精化.所有的非氢原子进行了各向异性精化后,用理论加氢法得到氢原子的位置.氢原子只做各向同性精化.

1.5 化合物 3 结构测定

无色六边形结晶(EtOH + H_2O), m. p. 243 ~ 244°C, $_{-\alpha}$] $_{D}^{25}$ ~ 56.47° (c 0.028, EtOH), FABMS m/z: 399[M+H] $^{+}$, 分子式 $C_{20}H_{30}O_{8}$ (按 $C_{20}H_{30}O_{8}$ · $H_{2}O$, 计算值: C 59.98, H 8.05, O 31.96, 实测值: C 59.88, H 7.93, O 32.20), IR ν_{max} : 3436(s), 1754(s) cm $^{-1}$; 1 H 和 13 C NMR 数据见表 3.

结晶学数据: 属正交晶系; 晶胞参数 a = 0.6073

(7) nm. b = 1.369 8(16) nm. c = 2.291 9(3) nm. 体积 1.906 6(4) nm³; 晶体大小 0.02 nm × 0.29 nm × 0.45 mm; 密度计算值(D_c)1.388 Mg·m⁻³; 晶胞中分子数 Z = 4; F(000) = 856; 所用的 X 射线 MoKa、吸收系数

 0.107 mm^{-1} ;空间群 $P2_12_12_1$;分子对称性:0.5-x, -y.0.5+z; -x.0.5+y.0.5-z;0.5+x.0.5-y, -z;最终偏离因子 $R_0=0.040$ 8, $R_W=0.044$ 5.

图式 1 Scheme 1

2 结果与讨论

2.1 化合物 2 结构分析

通过 FABMS m/z: 333[M+H]⁺,元素分析确定 其分子式为 $C_{19}H_{24}O_5$,不饱和度为 8. IR ν_{nus} : 3474 (s),3339(s),1665,1750 cm⁻¹显示分子中含有羟基, 共轭酮和 α,β - 不饱和 - γ - 内酯等官能团. ¹³ C NMR(表 1)显示其含有 2 个碳碳双键、2 个羰基($\hat{\alpha}_{c}$) 192.5,173.5),一个伯羟基和一个叔羟基,由此可推 定 2 的分子中含有四个环. 由 HMQC 和¹H - ¹H COSY 的相关关系推定出分子中含有(a).(b)二个片段(图式 2).通过 HMBC 实验,可观察到 $\delta_{\rm H}$ 1.79(18 - H₃)与 $\delta_{\rm C}$ 129.5(4 - C), 144.0(3 - C).51.7(5 - C)相关; $\delta_{\rm H}$ 0.77(20 - H₃)与 5 - C.9 - C.10 - C 相关; $\delta_{\rm H}$ 2.58 和 2.16 分别与 2 - C.3 - C.9 - C 相关,由此可推定出其分子中含有(c) 的结构片段.另外.将 2 的¹³C NMR 数据与从同属海绵(Spongia sp.)中分离到的 diosphenol ^[14]的进行比较,其 A 环上各个碳的数据均与 diosphenol 的一致,进一步肯定片段(c)的结构单元.

图式 2 Scheme 2

图 1 化合物 2 具代表性的 HMBC 相关关系 Fig. 1 Selected HMBC correlation of compound 2

HMBC实验提供的其他 H 与 C 的远程相关关系,可进一步将片段(a),(b),(c)以及伯羟基和内酯基连接起来,推定出 2 的平面结构(图 1).通过 X 射

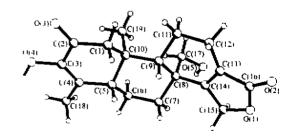


图 2 化合物 2 的晶体结构 Fig. 2 Crystal structure of compound 2

线单晶衍射分析(见实验部分).确证了上述经波谱方法推定的结构,并且测定得其相对构型(图 2).2 为新化合物,命名为 zimoclactone B.

表 2 化合物 2 的原子坐标(10⁴)和热参数(10⁵ × nm²)

Table 2 Atomic coordinate- (10⁴) and equivalent isotropic displacement parameters (10⁵ × nm²) of compound 2

•			·			
	x)		t≀(eq)		
$\epsilon(1)$	6 573(2)	3 169(2)	2 639(1)	35(1)		
$\zeta(2)$	6 831(2)	3 124(1)	1.874(1)	34(1)		
(13)	8.528(2)	3 606(1)	1 595(1)	31(1)		
C(4)	9.785(2)	4 144(1)	1 981(1)	31(1)		
C(5)	9 539(2)	4 219(1)	2.757(1)	29(1)		
C(6)	10 644(2)	5 209(2)	3 108(1)	35(1)		
C(7)	1 0574(2)	5 064(2)	3 888) [1	33+ t 3		
C(8)	8 611(2)	5 077(1)	4 172(1)	27) 11		
C(9)	7.420(2)	4 152(1)	3.762(1)	26), (1)		
C(10)	7.506(2)	4 274(1)	2 969(1)	261 [1		
c(II)	5 488(2)	4 085(2)	4 060(1)	35(1)		
C(12)	5 507(3)	3 642(2)	4 810(1)	45(1)		
C(13)	7 211(2)	3 994(1)	5 (67(1)	33(1)		
C(14)	8 575(2)	4 616(1)	4 901(1)	29(1)		
C(15)	10 017(2)	4 760(2)	5 432(1)	40(1)		
C(16)	7 666(3)	3 652(2)	5 871(1)	38(1)		
C(17)	7 860(2)	6 386(1)	4 (18911)	34([)		
C(18)	11 505(3)	4 607(2)	1 663(1)	50(1)		
C(19)	6 542(2)	5 416(1)	2 705(1)	34111		
O(1)	9 348(2)	4 111(1)	6 022(1)	44(1)		
O(2)	6 831(2)	3 066(1)	6.280(1)	56(1)		
0(3)	5 700(2)	2 692(1)	1.486(1)	52(1)		
O(4)	8 716(2)	3 482(1)	895) ti	37(1)		
0(5)	8 558(2)	7 055(1)	4 756(1)	42(1)		

U(eq)为正交 U,张量迹的 1/3.

U(eq) is defined as one third of the trace of the orthogonalized U_0 tensor.

2.2 化合物 3 结构分析

通过 FABMS m/z;383[M+H]+,元素分析确定 其分子式为 C₂₀H₂₀O₇, 不饱和度为 6. IR v_{max}: 3436 (s),1754(s) cm⁻¹显示羟基和 α,β - 不饱和 γ - 内酯 的存在,由3的¹H NMR 和¹³C NMR(表2)可知3含有 2个CH,;2个伯羟基,3个仲羟基,1个双键,I个内 酯和1个半缩醛形式的碳 H-H COSY 谱中,显示 分子中含有2个一CH一CH。一CH。一和1个一CH一 CH(OH)—CH(OH)—相关系统、同时可观察到 2-H,3-H 与 $I_{\alpha}-H,1\beta-H$ 有明显的相关关系,证明 2-C.3-C上的二个羟基的邻位关系,对比3与同 属海绵中分离到的代谢物 4 的¹³C NMR 数据^[14],除 13-0至16-0有较明显差别外,其余均与代谢物4 的非常接近,提示3与4的A,B,C环相同,差别仅 在于 D 环结构、结合¹³C NMR 的分析,可知 3 的 D 环 上应有一个四取代双键和一个半缩醛的结构、将 3 与 I 比较, 两者的 13 - C 至 16 - C 的 13 C NMR 数据 基本一致,推测3的D环结构与1的相似,根据上述 分析以及从 3 的 HMBC 谱中显示的 H 和 C 的远程 相关关系。(图 3)推定出 3 的平面结构。最后,通过 X 射线单晶衍射分析证实了波谱法推定的结构并确定 丁其相对构型(图 4).3 为新化合物,命名为 zimorlactone C.

表 3 化合物 3 的¹H 和 ¹³C NMR 数据

Table 3 ¹H and ¹³C NMR data of compound 3

No.	δ_{H} . J/H_{Z}	$\mathcal{E}_{i_{\star}}$	1H = 1H COSY	HMBC(H to C)
1a	1.08, br d, (12.0)	34 0 (1)	H(1b).H(2)	
16	2.21.dd,(12.0,2.5)		H(la),H(2)	
2	4.06, m	71.9 (d)	H(Ia), H(Ib), H(3)	C(1), C(3)
3	3.55, br s.	81.1 (d)	H(2)	C(2),C(4)
4		43.3 (s)		
5	1.06m	57.4 (d)	H(6)	C(10)
6	1.92,m	19.4 (d)	H(5),H(7)	
7	2.38,ddd(13.0,3.2,3.0)	34 6 (d)	H(6)	
8		41 8 (1)		
9	1 15,m	58.6 (d)	H(11a)_H(11b	
10		37.9 (5)		
Ha	1,36,dd(13.0,2.6)	24.7 (1)	H(9),H(11b),H(12a),H(12b)	
11b	1.56,dd(13.0,10.5)		H(12b),H([2a],H(11a),H(9)	C(13).C(14)
12a	2.42, m	18.3 (1)	H(12b), H(11a), H(11b)	C(13), C(14)
12b	2.72,dd,(11.5,5.0)		$H(12a)_{+}H(11a)_{+}H(11b)_{-}$	
13		135.6 (s)		
14		163.3 (s)		
15		172.5 (s)		C(12), C(13), C(14)
16	5.85,s	98.6 (d)		C(7), C(8), C(9), C(14)
17	3.83, m	66 3 (1)		C(3), C(4), C(5)
18	1.27,6	24.3 (q)		C(4),C(5)
[9a	4.48,d (12.0)	66.5 (1)		C(4),C(5)
19b	3.55, d (12.0)			
20	1.21,s	18.1 (q)		

图3 化合物 3 具代表性的 HMBC 相关关系

Fig. 3 Selected HMBC corelation of compound 3

图 4 化合物 3 的晶体结构

Fig. 4 Crystal structure of compound 3

表 4 化合物 3 的原子坐标(10°)和热参数(10°×nm²)

Table 4 Atomic coordinates (10⁴) and equivalent isotropic displacement parameters (10⁵ × nm²) of compound 3

	x	у	3	$E(\mathrm{eq})$		*	y	z	$U(\mathbf{eq})$
C(1)	7 036(3)	5 360(1)	2 119(1)	30(1)	C(15)	6 699(3)	2 560(1)	4 303(1)	29 (1)
C(2)	6 979(3)	5 403(1)	1.460(1)	34(1)	C(16)	5 344(4)	3 923(1)	4 768(1)	38(1)
C(3)	6 038(3)	4 472(1)	1 199(1)	32(1)	C(17)	10 906(3)	3 358(2)	3 461(1)	37(1)
C(4)	7 173(3)	3.518(1)	1 405(1)	28(1)	C(18)	5 680(4)	2 658(1)	1 221(1)	37(1)
C(5)	7 287(3)	3 539(1)	2 080(1)	25(1)	C(19)	9 460(3)	3 374(2)	1 122(1)	37(1)
C(6)	8 224(4)	2 601(1)	2 354(1)	341 [1	C(20)	10 746(3)	4 617(2)	2 310(1)	34(1)
C(7)	7 618(3)	2 524(1)	2 994(1)	31(1)	0(1)	9 083(3)	5 583(1)	1 203(1)	43(1)
C(8)	8 371(3)	3 409(1)	3 356(1)	27(1)	0(2)	5 971(3)	4 558(1)	577(1)	47(1)
C(9)	7 589(3)	4 368(1)	3 038(1)	26(1)	(1(3)	9 332(3)	3 282(1)	498(1)	49 (1)
C(10)	8 239(3)	4 464(1)	2 387(1)	25(1)	0(4)	11 470(3)	2 647(1)	3 887(1)	42(1)
C(11)	8 023(4)	5 267(1)	3 431(1)	34(1)	Ü(5)	7 054(2)	1.702(1)	4 228(1)	35(1)
C(12)	6 663(4)	5 222(1)	3 991(1)	42(1)	i)(b)	5 611(2)	2 864(1)	4 789(1)	36 (1)
C(13)	6 504(4)	4 207(1)	4 215(1)	33(1)	1)(7)	3 108(3)	4 146(1)	4 724(1)	48(1)
C(14)	7 265(3)	3 411(1)	3 944(1)	29(1)	D(8¼)	8 134(3)	1 453(2)	156(1)	63(1)

U(eq)为正交 U_a 张量迹的 1/3.

U(eq) is defined as one third of the trace of the orthogonalized U_{ν} tensor

本文为"庆祝邢其毅教授九十华诞暨执教六十年"征 文

References

- I Gulla, G.; Pietra, F. Helv Chim. Acta. 1991, 74, 47
- 2 Tanaka, J.; Higa, T. Tetrahedron, 1988, 44, 2805.
- 3 Davis, R.; Capon, R. J. Aust. J. Chem., 1993, 46, 1295
- 4 George, R.; Chicacz, Z. A.; Gao, F.; Herald, C. L.; Beoyd, M. R.; Schmidt, J. M.; Hooper, J. N. A. J. Org. Chem., 1993, 58, 1302.
- 5 Miglinolo, A.; Piccialli, V.; Sica, D. Tetrahedron, 1991, 47, 7937.

- L. C. J.; Schmitz, F. J.; Kelly Borges, M. J. Nat. Prod., 1998, 61, 546.
- 7 Pattenden, G.; Roberts, L.; Blake, A. J. J. Chem. Soc., Perkin Truss. 1, 1998, 863.
- 8 Mitchell, S. S.; Harper, M. K.; Faulkner, D. J. Tetrahedron., 1999, 55, 10887.
- 9 Kohnuto, S.; Moonnell, O. J.; Wright, A.; Cross, S. Chem. Lett., 1987, (9), 1687.
- 10 Zeng, L. M.; Lin, C. W.; Su, J. Y.; Yan, S. L.; Feng, X. L.; Ca., J. W. Chin, J. Chem., Accepted.
- 11 Bruker AYS, SAINT + , Version 6.0, Bruker AXS, Madison, WI, USA, 1999.
- 12 Blessing, R. Acta Crystollogr., Sect. A, 1995, 51,33.
- 13 Bruker AXS, SHELYTL, Version 5.1, Bruker AXS, Madison, WI, USA, 1998.
- 14 Gunasekera, S. P.; Schmitz, F. J. J. Org. Chem., 1991, 56, 1250

(Ed. PAN Bing - Feng)

(ZHENG Guo - Cheng)