有机化学 ›› 2019, Vol. 39 ›› Issue (11): 3244-3249.DOI: 10.6023/cjoc201903024 上一篇 下一篇
研究论文
AhmadMuhammad Siddique, 主亚敏, 郭云龙, 张赛赛, 沈增明*()
收稿日期:
2019-03-14
发布日期:
2019-06-12
通讯作者:
沈增明
E-mail:shenzengming@sjtu.edu.cn
基金资助:
Ahmad Muhammad Siddique, Zhu Yamin, Guo Yunlong, Zhang Saisai, Shen Zengming*()
Received:
2019-03-14
Published:
2019-06-12
Contact:
Shen Zengming
E-mail:shenzengming@sjtu.edu.cn
Supported by:
文章分享
研究了铜催化的脱羰环化生成靛红的方法,使用氧气作为最终的氧化剂.这个互补的C(sp3)—H官能团化方法为合成靛红提供了一种新方案.Cu/O2/Co体系显示出良好的反应性和兼容性,富电子和缺电子的官能团都可以很好地兼容.并基于机理研究和以前的文献报道,提出了一个可能的假设机理.
AhmadMuhammad Siddique, 主亚敏, 郭云龙, 张赛赛, 沈增明. 铜催化的有氧氧化合成靛红类衍生物的方法[J]. 有机化学, 2019, 39(11): 3244-3249.
Ahmad Muhammad Siddique, Zhu Yamin, Guo Yunlong, Zhang Saisai, Shen Zengming. Copper-Catalyzed Aerobic Oxidation Strategy: A Concise Route to Isatin[J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3244-3249.
![]() | ||||
Entry | Cat. | Additive | Time/h | Yieldb/% |
1 | CuCl2 | None | 49 | 34 |
2 | CuCl | None | 110 | 23 |
3 | CuBr | None | 110 | 17 |
4 | CuI | None | 82 | N.R. |
5 | CuSCN | None | 82 | N.R. |
6 | CuCN | None | 82 | N.R. |
7 | Cu2O | None | 110 | Trace |
8 | Cu(OAc)2 | None | 66 | N.R. |
9 | CuCl2 | ZnCl2 (1 equiv.) | 49 | 40 |
10 | CuCl2 | AlCl3 (1 equiv.) | 49 | N.R. |
11 | CuCl2 | BF3·Et2O (1 equiv.) | 67 | N.R. |
12 | CuCl2 | FeCl3 (1 equiv.) | 67 | N.R. |
13 | CuCl2 | PdCl2 (1 equiv.) | 67 | N.R. |
14 | CuCl2 | Cu(ClO4)·6H2O (1 equiv.) | 67 | N.R. |
15 | CuI | CoSO4 (1 equiv.) | 59 | 45 |
16 | CuSCN | CoCl2 (1 equiv.) | 59 | 62 |
17 | CuCN | Yb(OTf)3 (1 equiv.) | 48 | N.R. |
18 | Cu2O | Ni(OAc)2·4H2O (1 equiv.) | 65 | 16 |
19 | Cu(OAc)2 | Co(NO3)2·6H2O (1 equiv.) | 65 | Trace |
20 | CuCl2 | Cu(OAc)2·4H2O (1 equiv.) | 65 | N.R. |
21 | CuCl2 | LiCl (1 equiv.) | 49 | N.R. |
22 | CuCl2 | CuCl2(1 equiv.) | 49 | 23 |
23 | CuCl2 | CuCl2(1 equiv.)+ PivOH (1 equiv.) | 58 | 47 |
24 | CuCl2 | CuCl2(1 equiv.)+ PhCOOH (1 equiv.) | 57 | 69 |
25 | CuCl2 | CuCl2(20 mol%)+PhCOOH (20 mol%) | 84 | 78 |
26 | None | CoCl2 (1 equiv.)+PhCOOH (20 mol%) | 77 | N.R. |
![]() | ||||
Entry | Cat. | Additive | Time/h | Yieldb/% |
1 | CuCl2 | None | 49 | 34 |
2 | CuCl | None | 110 | 23 |
3 | CuBr | None | 110 | 17 |
4 | CuI | None | 82 | N.R. |
5 | CuSCN | None | 82 | N.R. |
6 | CuCN | None | 82 | N.R. |
7 | Cu2O | None | 110 | Trace |
8 | Cu(OAc)2 | None | 66 | N.R. |
9 | CuCl2 | ZnCl2 (1 equiv.) | 49 | 40 |
10 | CuCl2 | AlCl3 (1 equiv.) | 49 | N.R. |
11 | CuCl2 | BF3·Et2O (1 equiv.) | 67 | N.R. |
12 | CuCl2 | FeCl3 (1 equiv.) | 67 | N.R. |
13 | CuCl2 | PdCl2 (1 equiv.) | 67 | N.R. |
14 | CuCl2 | Cu(ClO4)·6H2O (1 equiv.) | 67 | N.R. |
15 | CuI | CoSO4 (1 equiv.) | 59 | 45 |
16 | CuSCN | CoCl2 (1 equiv.) | 59 | 62 |
17 | CuCN | Yb(OTf)3 (1 equiv.) | 48 | N.R. |
18 | Cu2O | Ni(OAc)2·4H2O (1 equiv.) | 65 | 16 |
19 | Cu(OAc)2 | Co(NO3)2·6H2O (1 equiv.) | 65 | Trace |
20 | CuCl2 | Cu(OAc)2·4H2O (1 equiv.) | 65 | N.R. |
21 | CuCl2 | LiCl (1 equiv.) | 49 | N.R. |
22 | CuCl2 | CuCl2(1 equiv.) | 49 | 23 |
23 | CuCl2 | CuCl2(1 equiv.)+ PivOH (1 equiv.) | 58 | 47 |
24 | CuCl2 | CuCl2(1 equiv.)+ PhCOOH (1 equiv.) | 57 | 69 |
25 | CuCl2 | CuCl2(20 mol%)+PhCOOH (20 mol%) | 84 | 78 |
26 | None | CoCl2 (1 equiv.)+PhCOOH (20 mol%) | 77 | N.R. |
[1] |
(a) Sumpter, W. C. Chem. Rev. 1944, 34, 393.
doi: 10.1021/cr60109a003 |
(b) da Silva, J. F. M.; Garden, S. J.; Pinto, A. C. J. Braz. Chem. Soc. 2001, 12, 273.
doi: 10.1021/cr60109a003 |
|
[2] |
(a) Ratan, B. T.; Anand, B.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2005, 15, 4451.
doi: 10.1016/j.bmcl.2005.07.046 |
(b) Raj, A.; Raghunathan, R.; Sridevikumaria, M. R.; Raman, N. Bioorg. Med. Chem. 2003, 11, 407.
doi: 10.1016/j.bmcl.2005.07.046 |
|
(c) Verma, M.; Pandeya, S. N.; Singh, K. N.; Stables, J. P. Acta Pharm. 2004, 54, 49.
doi: 10.1016/j.bmcl.2005.07.046 |
|
(d) Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Tuntlad, T.; Zhang, K.; Karanewsky, D.; He, Y. Bioorg. Med. Chem. Lett. 2006, 16, 2109.
doi: 10.1016/j.bmcl.2005.07.046 |
|
(e) Aboul-Fadl, T.; Bin-Jubair, F. A. S. Int. J. Res. Pharm. Sci. 2010, 1, 113.
doi: 10.1016/j.bmcl.2005.07.046 |
|
(f) Sharma, S.; Gupta, M. K.; Saxena, A. K.; Bedi, P. M. S. Bioorg. Med. Chem. 2015, 23, 7165.
doi: 10.1016/j.bmcl.2005.07.046 |
|
(g) Harbinder, S.; Jatinder, V. S.; Gupta, M. K.; Sharma, S.; Nepali, K.; Bedi, P. M. S. Bioorg. Med. Chem. Lett. 2017, 27, 3974.
doi: 10.1016/j.bmcl.2005.07.046 |
|
[3] |
Sandmeyer T. Helv. Chim. Acta 1919, 2 234.
doi: 10.1002/hlca.19190020125 |
[4] |
(a) Stollé, R. Ber. Dtsch. Chem. Ges. 1913, 46, 3915.
doi: 10.1002/(ISSN)1099-0682 |
(b) Stollé, R. J. Prakt. Chem. 1922, 106, 137.
doi: 10.1002/(ISSN)1099-0682 |
|
[5] | (a) Martinet, J. Compt. Rend. 1918, 166, 85. |
(b) Bonnefoy, J.; Martinet, J. Compt. Rend. 1921, 172, 220. | |
[6] |
Xie Y. Chem. Commun. 2016, 52 12372.
doi: 10.1039/C6CC05769A |
[7] |
(a) Sun, J.; Liu, B.; Xu, B. RSC Adv. 2013, 3, 5824.
doi: 10.1039/c3ra40657a |
(b) Liu, T.; Yang, H.; Jiang, Y.; Fu, H. Adv. Synth. Catal. 2013, 355, 1169.
doi: 10.1039/c3ra40657a |
|
(c) Tang, B.-X.; Song, R.-J.; Wu, C.-Y.; Liu, Y.; Zhou, M.-B.; Wei, W.-T.; Deng, G.-B.; Yin, D.-L.; Li, J.-H. J. Am. Chem. Soc. 2010, 132, 8900.
doi: 10.1039/c3ra40657a |
|
(d) Liu, T.; Yang, H.; Jiang, Y.; Fu, H. Adv. Synth. Catal. 2013, 355, 1169.
doi: 10.1039/c3ra40657a |
|
(e) Sun, J.; Liu, B.-X.; Xu, B. RSC Adv. 2013, 3, 5824.
doi: 10.1039/c3ra40657a |
|
(f) Ilangovan, A.; Satish, G. Org. Lett. 2013, 15, 5726.
doi: 10.1039/c3ra40657a |
|
(g) Huang, P. C.; Gandeepan, P.; Cheng, C. H. Chem. Commun. 2013, 49, 8540.
doi: 10.1039/c3ra40657a |
|
(h) Li, J.; Zheng, Y.; Yu, X. L.; Lv, S. Y.; Wang, Q. T.; Hai, L.; Wu Y. RSC Adv. 2015, 5, 103280.
doi: 10.1039/c3ra40657a |
|
(i) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem., Int. Ed. 2012, 51, 3231.
doi: 10.1039/c3ra40657a |
|
(j) Meng, Q.; Wang, F.; Li, M. J. Mol. Model. 2013, 19, 2225.
doi: 10.1039/c3ra40657a |
|
[8] |
Liao Y.-Y.; Gao Y.-C.; Zheng W.; Tang R.-Y. Adv. Synth. Catal. 2018, 360 3391.
doi: 10.1002/adsc.201800592 |
[9] |
Lollar C. T.; Krenek K. M.; Bruemmer K. J.; Lippert A. R. Org. Biomol. Chem. 2014, 12 406.
doi: 10.1039/C3OB42024H |
[10] |
(a) Satish, G.; Polu, A.; Ramar, T.; Ilangovan, A. J. Org. Chem. 2015, 80, 5167.
doi: 10.1021/acs.joc.5b00581 |
(b) Reddy, M. R.; Rao, N. N.; Ramakrishna, K.; Meshram, H. M. Tetrahedron Lett. 2014, 55, 4758.
doi: 10.1021/acs.joc.5b00581 |
|
(c) Ilangovan, A.; Satish, G. J. Org. Chem. 2014, 79, 4984.
doi: 10.1021/acs.joc.5b00581 |
|
(d) Gao, F. F.; Xue, W. J.; Wang, J. G.; Wu, A. X. Tetrahedron 2014, 70, 4331.
doi: 10.1021/acs.joc.5b00581 |
|
[11] |
(a) Huang, P. C.; Gandeepan, P.; Cheng, C. H. Chem. Commun. 2013, 49, 8540.
doi: 10.1039/c3cc44435j |
(b) Wu, H.; Zhang, Z. G.; Liu, Q. F.; Liu, T. X.; Ma, N. N.; Zhang, G. S. Org. Lett. 2018, 20, 2897.
doi: 10.1039/c3cc44435j |
|
(c) Salvanna, N.; Reddy, L. M.; Kumar, R. A.; Das, B. ChemistrySelect 2018, 3, 8019.
doi: 10.1039/c3cc44435j |
|
[12] |
Nobrega J. A.; Goncalves S. M. C.; Peppe C. Synth. Commun. 2002, 32 3711.
doi: 10.1081/SCC-120015383 |
[13] |
Shekhar A. C.; Kumar A. R.; Sathaiah G.; Paul V. L.; Sridhar M.; Rao P. S. Tetrahedron Lett. 2009, 50 7099.
doi: 10.1016/j.tetlet.2009.10.006 |
[14] |
Kirincich S. J.; Xiang J.; Green N.; Tam S.; Yang H. Y.; Shim J.; Clark J. D.; McKew J. C. Bioorg. Med. Chem. 2009, 17 4383.
doi: 10.1016/j.bmc.2009.05.027 |
[15] |
Luo J. F.; Gao S. S.; Ma Y. R.; Ge G. P. Synlett 2018, 29 969.
doi: 10.1055/s-0036-1591904 |
[16] |
Ji H. H.; Zhu Y. Z.; Shao Y.; Liu J.; Yuan Y.; Jia X. D. J. Org. Chem. 2017, 82 9859.
doi: 10.1021/acs.joc.7b01480 |
[17] |
Wang H. Y.; Wang K. Y.; Man Y. Q.; Gao X. N.; Yang L. M.; Ren Y. F.; Li N.; Tang B.; Zhao G. Adv. Synth. Catal. 2017, 359 3934.
doi: 10.1002/adsc.201700649 |
[18] |
Bredenkampa A.; Mohrb F.; Kirsch S. F. Synthesis 2015, 47 1937.
doi: 10.1055/s-0034-1380517 |
[19] |
Zhang C.; Li S.; Filip B.; Richmond L.; Ye X.; Jiang Z. ACS Catal. 2016, 6 10 6853.
doi: 10.1021/acscatal.6b01969 |
[20] |
Salvanna N.; Ramesh P.; Kumarc K. S.; Das B. New J. Chem. 2017, 41 13754.
doi: 10.1039/C7NJ02441J |
[1] | 谭丹, 吴赛, 魏欢, 胡袁源, 陈华杰. 靛红并苊醌二甲酰亚胺类共轭分子的设计合成及性质研究[J]. 有机化学, 2020, 40(9): 2919-2928. |
[2] | 张亚辉, 刘洋, 缪建康, 郝文燕. 铜催化邻烯基芳基异硫氰酸酯与叠氮化钠串联双环化反应合成5H-苯并四氮唑并噻嗪化合物[J]. 有机化学, 2020, 40(8): 2426-2432. |
[3] | 武力左, 张峰源, 章振涛, 尚垒, 刘宇. Ming-Phos/铜催化的甲亚胺叶立德与三氟甲基烯酮的不对称[3+2]环加成反应[J]. 有机化学, 2020, 40(8): 2460-2467. |
[4] | 黄帅帅, 聂一雪, 杨晶晶, 郑战江, 曹建, 徐征, 徐利文. 铜催化二氟乙醇的芳基醚化反应及其机理研究[J]. 有机化学, 2020, 40(7): 2018-2025. |
[5] | 阿布力米提·阿布都卡德尔, 汪荣, 买尔哈巴·买买提, 刘晨江. O2参与下FeCl2催化的分子内氧化反应构建异噁唑杂环[J]. 有机化学, 2020, 40(6): 1697-1703. |
[6] | 刘博瑜, 徐仙君, 黄立梁, 冯煌迪. 铜(I)催化丙炔酸、仲胺、醛和甲醛一锅法交叉偶联构建非对称1,4-二氨基丁炔[J]. 有机化学, 2020, 40(5): 1290-1296. |
[7] | 张晓鹏, 朱妍洁, 朱奕崧, 李政伟, 张贵生. 2,3-二氢喹唑啉-4(1H)-酮类化合物的合成研究进展[J]. 有机化学, 2019, 39(9): 2392-2402. |
[8] | 兰天磊, 张越, 刘伟, 席婵娟, 陈超. 咔唑基高价碘试剂参与的活化芳烃直接咔唑化反应研究[J]. 有机化学, 2019, 39(8): 2166-2174. |
[9] | 任培星, 齐林, 方卓越, 吴天舒, 高雅蒙, 沈松, 宋金燕, 王力竞, 李玮. 铜催化β,γ-不饱和腙与二硫/硒化物的硫/硒胺基化反应:合成硫/硒化吡唑啉类化合物[J]. 有机化学, 2019, 39(6): 1776-1786. |
[10] | 王云龙, 张林宝, 牛俊龙, 宋毛平. N,O-双齿螯合作用下铜促进的C-H键直接硝基化反应[J]. 有机化学, 2019, 39(6): 1761-1766. |
[11] | 师晓楠, 田苗苗, 王慕华, 张新迎, 范学森. 由饱和酮与肼/醛腙的[3+2]/[2+3]环化反应区域选择性合成多取代吡唑[J]. 有机化学, 2019, 39(6): 1630-1641. |
[12] | 施兆江, 王连会, 崔秀灵. 基于I2催化的C-H键功能团化的研究进展[J]. 有机化学, 2019, 39(6): 1596-1612. |
[13] | 杨思琪, 李鑫, 彭卓金, 于文艳, 王光续, 靳雅兰, 郑冰冰, 代洪雪, 白大昌. 铜催化肟酯参与的[3+3]环加成反应合成4-五氟乙基取代的吡啶类化合物[J]. 有机化学, 2019, 39(6): 1623-1629. |
[14] | 张振雷, 钱朋, 查正根. 芳香磺酰肼与胺通过铜催化氧化偶联合成芳香磺酰胺[J]. 有机化学, 2019, 39(5): 1316-1322. |
[15] | 周安西, 周晓菲, 毛刘量, 郑大贵, 祝显虹, 陈宗保. 在含水介质中铜催化交叉氧化偶联反应合成β-酰基-α-氨基酸衍生物[J]. 有机化学, 2019, 39(4): 1070-1078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||