有机化学 ›› 2019, Vol. 39 ›› Issue (10): 2796-2801.DOI: 10.6023/cjoc201907038 上一篇 下一篇
研究论文
收稿日期:
2019-07-26
修回日期:
2019-08-22
发布日期:
2019-09-05
通讯作者:
马献涛
E-mail:xiantaoma@126.com
基金资助:
Ma Xiantao*(), Zhou Kunjie, Ren Mengjuan, Wang Mengyu, Yu Jing
Received:
2019-07-26
Revised:
2019-08-22
Published:
2019-09-05
Contact:
Ma Xiantao
E-mail:xiantaoma@126.com
Supported by:
文章分享
报道了苯酚与廉价易得的氢溴酸的区域选择性溴化反应. 研究发现使用含有较大取代基的亚砜取代广为使用的二甲亚砜作为氧化剂, 可以极大地提高反应的区域选择性, 以中等至优秀的收率、高达99/1的区域选择性得到预期的溴代苯酚产物. 该方法可以很容易放大到50 mmol级别, 并且通过萃取与重结晶分离技术即可得到预期的溴代苯酚产物.
马献涛, 周坤洁, 任梦娟, 王梦雨, 于静. 立体位阻效应导致的苯酚的区域选择性溴化[J]. 有机化学, 2019, 39(10): 2796-2801.
Ma Xiantao, Zhou Kunjie, Ren Mengjuan, Wang Mengyu, Yu Jing. Steric Hindrance Effect Leading to Regioselective Bromination of Phenols with HBr[J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2796-2801.
Entry | R (2) | Solvent | 3ab/% | 3a/4ac |
---|---|---|---|---|
1d | Me (2a) | DMSO | 25 | 61/39 |
2 | Me (2a) | DMSO | 55 | 69/31 |
3 | Me (2a) | MeCN | 80 | 89/11 |
4 | n-Bu (2b) | MeCN | 75 | 93/7 |
5 | Bn (2c) | MeCN | 82 | 98/2 |
6 | Ph (2d) | MeCN | 86 | 95/5 |
7 | 4-MeC6H4 (2e) | MeCN | 87 | 96/4 |
8 | 4-ClC6H4 (2f) | MeCN | 91 | 97/3 |
9 | 4-ClC6H4 (2f) | EtOAc | 84 | 94/6 |
10 | 4-ClC6H4 (2f) | DMF | 0 | — |
11 | 4-ClC6H4 (2f) | CHCl3 | 41 | 62/38 |
Entry | R (2) | Solvent | 3ab/% | 3a/4ac |
---|---|---|---|---|
1d | Me (2a) | DMSO | 25 | 61/39 |
2 | Me (2a) | DMSO | 55 | 69/31 |
3 | Me (2a) | MeCN | 80 | 89/11 |
4 | n-Bu (2b) | MeCN | 75 | 93/7 |
5 | Bn (2c) | MeCN | 82 | 98/2 |
6 | Ph (2d) | MeCN | 86 | 95/5 |
7 | 4-MeC6H4 (2e) | MeCN | 87 | 96/4 |
8 | 4-ClC6H4 (2f) | MeCN | 91 | 97/3 |
9 | 4-ClC6H4 (2f) | EtOAc | 84 | 94/6 |
10 | 4-ClC6H4 (2f) | DMF | 0 | — |
11 | 4-ClC6H4 (2f) | CHCl3 | 41 | 62/38 |
[1] | Fusetani, N.; Matsunaga, S. Chem. Rev. 1993, 93, 1793. |
(b) Segraves, E. N.; Shah, R. R.; Segraves, N. L.; Johnson, T. A.; Whitman, S.; Sui, J. K.; Kenyon, V. A.; Cichewicz, R. H.; Crews, P.; Holman, T.R. J. Med. Chem. 2004, 47, 4060. | |
(c) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46, 7458. | |
(d) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930.(in Chinese). | |
( 钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.) | |
(e) Zhou, P.; Hou, A.; Wang, Y. Chin. J. Org. Chem. 2018, 38, 156(in Chinese). | |
( 周鹏飞, 侯爱君, 王洋, 有机化学, 2018, 38, 156.) | |
[2] | For reviews:see: (a) Smith, K.; El-HitiI, G.A. Curr. Org. Synth. 2004, 1, 253. |
(b) Saikia, A. J.; Borah, P.P. Chem. Rev. 2016, 116, 6837. | |
[3] | For a review see:(a) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873 (in Chinese). |
( 骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873 ) | |
For selected recent reports, see: (b) Okada, Y.; Yokozawa, M.; Akiba, M.; Oishi, K.; O-kawa, K.; Akeboshi, T.; Kawamura, Y.; Inokuma, S.; Nakamura, Y.; Nishimura, J. Org. Biomol. Chem. 2003, 1, 2506. | |
(c) Bovonsombat, P.; Ali, R.; Khan, C.; Leykajarakul, J.; Pla-on, K.; Aphimanchindakul, S.; Pungcharoenpong, N.; Timsuea, N.; Arunrat, A.; Punpongjareorn, N. Tetrahedron. 2010, 66, 6928. | |
(d) Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782. | |
(e) Nishimura, J.; Tang, R.-J.; Milcent, T.; Crousse, B. J. Org. Chem. 2018, 83, 930. | |
[4] | For a review, see: Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C.T. Chem. Rev. 2006, 106, 3364. |
[5] | For reviews, see: (a) Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424. |
(b) Zhang, G.; Wang, Y.; Ding, C.; Liu, R.; Liang, X. Chin. J. Org. Chem. 2011, 31, 804 (in Chinese). | |
For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210. | |
For selected recent reports, see: (c) Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210. | |
(d) Satkar, Y.; Ramadoss, V.; Nahide, P. D.; García-Medina, E.; Juárez-Ornelas, K. A.; Alonso-Castro, A. J.; Chávez-Rivera, R.; Jiménez-Halla, J. O. C.; Solorio-Alvarado, C.R. RSC Adv. 2018, 8, 17806. | |
(e) Sorabad, G. S.; Maddani, M.R. New J. Chem. 2019, 43, 6563. | |
(f) Walter, C.; Fallows, N.; Kesharwani, T. ACS Omega, 2019, 4, 6538. | |
(g) Semwal, R.; Ravi, C.; Kumar, R.; Meena, R.; Adimurthy, S. J. Org. Chem. 2019, 84, 792. | |
(h) Satkar, Y.; Yera-Ledesma, L. F.; Mali, N.; Patil, D.; Navarro-Santos, P.; Segura-Quezada, L. A.; Ramírez-Morales, P. I.; Solorio-Alvarado, C.R. J. Org. Chem. 2019, 84, 4149. | |
(i) Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C.R. Tetrahedron Lett. 2019, 60, 1551. | |
[6] | For selected recent reports, see: (a) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. . Chem.-Eur. J 2013, 20, 662. |
(b) Liu, C.; Dai, R.; Yao, G.; Deng, Y.J. Chem. Res. 2014, 38, 593. | |
(c) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285. | |
(d) Karki, M.; Magolan, J. J. Org. Chem. 2015, 80, 3701. | |
(e) Mal, K.; Kaur, A.; Haque, F.; Das, I. J. Org. Chem. 2015, 80, 640. | |
(f) Sorabad, G. S.; Maddani, M.R. New J. Chem. 2019, 43, 6563. | |
[7] | (a) Pandit, P. K.; Gayen, S.; Khamarui, S.; Chatterjee, N.; Maiti, D.K. Chem. Commun. 2011, 47, 6933. |
(b) Iskra, J.; Murphree, S.S. Tetrahedron Lett. 2017, 58, 645. | |
(c) Xin, H.; Yang, S.; An, B.; An, Z. RSC Adv. 2017, 7, 13467. | |
(d) Tomizuka, A.; Moriyama, K. Adv. Synth. Catal. 2019, 361, 1447. | |
(e) Xin, H.; Hu, L.; Yu, J.; Sun, W.; An, Z. Catal. Commun. 2017, 93, 1. | |
(f) Kajita, H.; Togni, A. ChemistrySelect. 2017, 2, 1117. | |
(g) Cao, L.; Liu, B.; Liu, W.; Yao, G.; Cheng, Q. Chin. J. Org. Chem. 2011, 31, 2178.(in Chinese). | |
( 曹志凌, 刘冰, 刘玮炜, 姚国伟, 程青芳, 有机化学, 2011, 31, 2178.) | |
[8] | Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. . Lett 2015, 17, 2886. |
[9] |
For reviews, see: (a) Huang, Z.; Lumb, J.-P. ACS Catal. 2019, 9, 521.
doi: 10.1021/acscatal.8b04098 |
(b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
doi: 10.1021/acscatal.8b04098 |
|
(c) Yanagi, T.; Nogi, K.; Yorimitsu, H. Tetrahedron Lett. 2018, 59, 2951.
doi: 10.1021/acscatal.8b04098 |
|
[10] | (a) Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337. |
(b) Ma, X.; Yu, J.; Jiang, M.; Wang, M.; Tang, L.; Wei, M.; Zhou, Q. Eur. J. Org. Chem. 2019,4593. | |
[11] | Chauhan and coworkers reported a regioselective bromination of phenol with HBr at room temperature. The target 4-bromophenol could be obtained in 89% yield, but no experimental details could be found in the literature, see: Srivastava, S. K.; Chauhan P. M. S.; Bhaduri, A. P. Chem. Commun.1996, 2679 for details. We attempted for some times, but the target 3a was obtained only in low yield by using DMSO as a solvent at room temperature. |
[12] | Our experimental results are consistent with Jiao’s observation, ie the use of stoichiometric DMSO as the oxidant instead of as the solvent can greatly improve the reaction efficiency and selectivity, see Ref. [8]. |
[13] | Kakarla, R.; Dulina, R. G.; Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M.J. J. Org. Chem. 1996, 61, 8347. |
[14] |
Choudhury, L. H.; Parvin, T.; Khan, A. T. Tetrahedron 2009, 65, 9513.
doi: 10.1016/j.tet.2009.07.052 |
[15] | Ghiaci, M.; Sedaghat, M. E.; Ranjbari, S.; Gil, A. Appl. Catal. A: Gen. 2010, 384, 18. |
[16] |
Mabic, S.; Lepoittevin, J.-P. Tetrahedron Lett. 1995, 36, 1705.
doi: 10.1016/0040-4039(95)00050-M |
[17] |
Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.
doi: 10.1021/acscatal.5b00306 |
[18] |
Xiong, X.; Yeung, Y.-Y. ACS Catal. 2018, 8, 4033.
doi: 10.1021/acscatal.8b00327 |
[19] | Carrigan, M. D.; Sarapa, D.; Smith, R. C.; Wieland, L. C.; Mohan, R.S. J. Org. Chem. 2002, 67, 1027. |
[20] | Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874. |
[21] | Diemer, V.; Begaud, M.; Leroux, F. R.; Colobert, F . Eur. J. Org. Chem. 2011,341. |
[22] |
Kajita, H.; Togni, A. ChemistrySelect 2017, 2, 1117.
doi: 10.1002/slct.201700024 |
[23] | Kerr, D. J.; Willis, A. C.; Flynn, B.L. Org. Lett. 2004, 6, 457. |
[24] | Liu, Y.; Kim, J.; Seo, H.; Park, S.; Chae, J. Adv. Synth. Catal. 2015, 357, 2205. |
[1] | 刘玲玲, 杨闪, 韩昳, 戴晨阳, 史达清, 黄志斌, 赵应声. 铑催化的丙酮肟醚导向的苯酚的邻位烯基化反应[J]. 有机化学, 2020, 40(8): 2394-2401. |
[2] | 李新民, 胡瑞, 陈正军, 胡庆红, 袁泽利. 串联反应合成氟磺酸联苯酚酯[J]. 有机化学, 2020, 40(7): 2135-2141. |
[3] | 蒋筱莹, 姚传胜, 童踔, 白仁仁, 周涛, 谢媛媛. 无催化条件下采用叔丁基过氧化氢(TBHP)选择性氧化硫醚/二硫醚至亚砜/单砜[J]. 有机化学, 2020, 40(6): 1752-1759. |
[4] | 郭圆圆, 刘振伟, 朱明祥, 李琳琳, 李敬亚, 邹大鹏, 吴豫生, 吴养洁. 铜促进8-氨基喹啉导向的芳基酰胺的二甲硫基化反应[J]. 有机化学, 2020, 40(3): 724-730. |
[5] | 李伟林, 陈炫颖, 郑天骄, 邹祺, 陈文博. 亚砜脱氧还原方法研究进展[J]. 有机化学, 2019, 39(9): 2443-2457. |
[6] | 吕雯雯, 贺信淳, 施敏, 王飞军. 酸酐诱导的2-(1-羟基-1-苯烷基)苯酚一步合成邻酰氧基二芳基烯烃[J]. 有机化学, 2019, 39(2): 532-537. |
[7] | 郭兵博, 沈生强, 金淑惠, 路慧哲, 张建军. 4-硝基苯基N,N'-二乙酰基-4-硫基-β-壳二糖苷的合成与酶底物活性研究[J]. 有机化学, 2019, 39(12): 3490-3497. |
[8] | 唐灏, 骆钧飞, 解攀. 脱氢偶联制备芳基醚方法的研究进展[J]. 有机化学, 2019, 39(10): 2735-2743. |
[9] | 刘玉峰, 曹重仲, 苏淼东, 李慧, 符美强, 刘强, 罗伟平, 郭灿城. 铁卟啉催化酮和二甲亚砜以及醋酸铵的环化反应:吡啶的一步合成[J]. 有机化学, 2019, 39(1): 129-136. |
[10] | 李晓波, 赵娟, 刘倩, 蒋敏, 刘金涛. 全氟烷基次磺酸与炔烃和联烯的加成反应[J]. 有机化学, 2019, 39(1): 183-191. |
[11] | 钱少平, 马尧睿, 高姗姗, 骆钧飞. 芳香环C-H羟基化制备苯酚方法的研究进展[J]. 有机化学, 2018, 38(8): 1930-1939. |
[12] | 杨金闯, 李国松, 吕成伟, 安悦, 高爽. 手性类卟啉N4配体与锰络合物氧化动力学拆分消旋芳香环亚砜[J]. 有机化学, 2018, 38(11): 3070-3077. |
[13] | 张海峰, 鲍汉扬, 徐峥, 刘运奎. 无金属参与的α-羰基二硫缩烯酮的硫甲基化反应[J]. 有机化学, 2017, 37(8): 2153-2158. |
[14] | 王芳, 徐林, 孙诚, 徐清, 黄杰军, 俞磊. 有机硒催化苯酚选择性氧化制对苯醌的研究[J]. 有机化学, 2017, 37(8): 2115-2118. |
[15] | 蔺松波, 何兴瑞, 孟金鹏, 顾海宁, 张培志, 吴军. 无过渡金属存在下由邻卤苯酚合成邻卤二芳胺[J]. 有机化学, 2017, 37(7): 1864-1869. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||