有机化学 ›› 2020, Vol. 40 ›› Issue (2): 351-363.DOI: 10.6023/cjoc201909022 上一篇    下一篇

综述与进展

醌式杂环化合物的设计、合成及应用性能研究进展

蔡金芳a, 江华a,b, 崔志华a,b, 陈维国a,b   

  1. a 浙江理工大学 生态染整技术教育部工程研究中心 杭州 310018;
    b 浙江理工大学 先进纺织材料与制备技术教育部重点实验室 杭州 310018
  • 收稿日期:2019-09-15 修回日期:2019-10-14 出版日期:2020-02-25 发布日期:2019-11-01
  • 通讯作者: 江华 E-mail:jh@zstu.edu.cn
  • 基金资助:
    浙江省公益技术研究计划(No.LGG18B060003)、国家自然科学基金(Nos.21808210,51673176)和浙江理工大学基本科研业务费专项资金(No.2019Q018)资助项目.

Research Progress in Design, Synthesis and Application for Quinoidal Heterocyclic Compounds

Cai Jinfanga, Jiang Huaa,b, Cui Zhihuaa,b, Chen Weiguoa,b   

  1. a Engineering Research Center for Eco-dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018;
    b Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Hangzhou 310018
  • Received:2019-09-15 Revised:2019-10-14 Online:2020-02-25 Published:2019-11-01
  • Supported by:
    Project supported by the Public Welfare Technology Research Project of Zhejiang Province (No. LGG18B060003), the National Natural Science Foundation of China (Nos. 21808210, 51673176) and the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 2019Q018).

醌式杂环(噻吩、吡咯、呋喃等)分子具有结构刚性、最高占据分子轨道(HOMO)/最低未占据分子轨道(LUMO)能级低、能级带隙窄和摩尔消光系数高等特点.醌式分子因其结构平面性特点,分子间作用力较强,因而分子间电荷传输能力强.目前,醌式杂环分子已成为有机半导体材料领域特别是有机场效应晶体管领域的研究热点.根据醌式杂环分子的结构特点,以端基为分类依据,综述了近年来醌式杂环化合物在分子设计、合成及应用性能等方面的研究进展,并展望了醌式杂环分子的发展前景.

关键词: 醌式杂环化合物, 设计与合成, 性质与应用, 有机半导体材料, 有机场效应晶体管

Quinoidal heterocyclic (thiophene, pyrrole, furan, etc.) molecules have the characteristics of rigid backbone, low highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) level, narrow band gap and high molar extinction coefficient, and so on. Because of their planar structures, quinoidal molecules usually have strong intermolecular charge transfer ability due to the strong intermolecular interaction. Up to now, quinoidal heterocyclic molecules have become a research hotspot in the field of organic semiconductor materials, especially in the field of organic field effect transistors. According to the structural features of quinoidal heterocyclic molecules and the classification basis of terminal groups, the research progress of quinoidal heterocyclic compounds in molecular design, synthesis and application in recent years is reviewed, and the development of quinoidal heterocyclic molecules is prospected.

Key words: quinoidal heterocyclic compound, design and synthesis, property and application, organic semiconductor material, organic field effect transistors