有机化学 ›› 2021, Vol. 41 ›› Issue (1): 284-296.DOI: 10.6023/cjoc202008044 上一篇 下一篇
研究论文
收稿日期:
2020-08-24
修回日期:
2020-09-07
发布日期:
2020-09-09
通讯作者:
温庭斌
作者简介:
基金资助:
Xinyu Wanga, Qihuan Lia, Tingbin Wena,*()
Received:
2020-08-24
Revised:
2020-09-07
Published:
2020-09-09
Contact:
Tingbin Wen
Supported by:
文章分享
报道了钌催化末端炔丙醇经亚丙二烯基卡宾中间体氧化产生亚甲基烯酮合成 α, β-不饱和羧酸衍生物的高效方法. 机理研究实验表明, 催化剂CpRuCl(PPh3)2/NaBPh4和末端炔丙醇反应产生的钌亚丙二烯基卡宾与吡啶氧化物发生氧转移, 生成高活性的亚甲基烯酮中间体, 再发生亲核加成得到 α, β-不饱和产物. 该反应提供了一个机理上完全不同于传统方法的合成 α, β-不饱和羧酸衍生物的新策略, 是炔丙醇催化转化的一种新颖方法, 也是金属亚丙二烯基催化的一种新途径.
王新宇, 李其欢, 温庭斌. 钌催化末端炔丙醇经亚丙二烯基卡宾中间体氧化产生亚甲基烯酮: α, β-不饱和羧酸衍生物的合成[J]. 有机化学, 2021, 41(1): 284-296.
Xinyu Wang, Qihuan Li, Tingbin Wen. Ruthenium-Catalyzed Oxygenative Transformation of Terminal Propargyl Alcohols to Metheyleneketenes via Allenylidene Intermedia-tes: Synthesis ofα,β-Unsaturated Carboxylic Acid Derivatives[J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 284-296.
Entry | x/mol% | Addtive | Yield b /% |
---|---|---|---|
1 | 10 | NaPF 6 (1 equiv.) | 95 |
2 | 10 | None | Trace |
3 | None | With or without NaPF 6 | 0 |
4 c | 10 | NaPF 6 (1 equiv.) | 84 |
5 | 10 | NaPF 6 (20 mol%) | 42 |
6 | 10 | NaBPh 4 (20 mol%) | 98 |
7 | 5 | NaBPh 4 (10 mol%) | 85 |
8 d | 5 | NaBPh 4 (10 mol%) | 97 |
9 d | 5 | NaBPh 4 (7.5 mol%) | 91 |
Entry | x/mol% | Addtive | Yield b /% |
---|---|---|---|
1 | 10 | NaPF 6 (1 equiv.) | 95 |
2 | 10 | None | Trace |
3 | None | With or without NaPF 6 | 0 |
4 c | 10 | NaPF 6 (1 equiv.) | 84 |
5 | 10 | NaPF 6 (20 mol%) | 42 |
6 | 10 | NaBPh 4 (20 mol%) | 98 |
7 | 5 | NaBPh 4 (10 mol%) | 85 |
8 d | 5 | NaBPh 4 (10 mol%) | 97 |
9 d | 5 | NaBPh 4 (7.5 mol%) | 91 |
Entry | Catalyst | Additive | Yield b /% |
---|---|---|---|
1 | CpRuCl(PPh 3) 2 | NaBPh 4 (10 mol%) | 97 |
3 c | [Ru( μ-Cl)(DPPQ) 2] 2- [BPh 4] 2 | None | Trace |
2 | CpRuCl(dppe) | NaBPh 4 (10 mol%) | 30 |
4 | Other Ru catalysts d | NaBPh 4 (10 mol%) | 0 |
5 e | RhCl(PPh 3) 3 | NaPF 6 (1 equiv.) or none | 0 |
6 e , f | [RhCl(COD)] 2 | P( p-FC 6H 4) 3 (30 mol%) NaPF 6 (1 equiv.) or none | 0 |
Entry | Catalyst | Additive | Yield b /% |
---|---|---|---|
1 | CpRuCl(PPh 3) 2 | NaBPh 4 (10 mol%) | 97 |
3 c | [Ru( μ-Cl)(DPPQ) 2] 2- [BPh 4] 2 | None | Trace |
2 | CpRuCl(dppe) | NaBPh 4 (10 mol%) | 30 |
4 | Other Ru catalysts d | NaBPh 4 (10 mol%) | 0 |
5 e | RhCl(PPh 3) 3 | NaPF 6 (1 equiv.) or none | 0 |
6 e , f | [RhCl(COD)] 2 | P( p-FC 6H 4) 3 (30 mol%) NaPF 6 (1 equiv.) or none | 0 |
[1] |
For selected reviews on the organometallic properties of vinylidene complexes, see: (a) Bruce M. I. Chem. Rev. 1991, 91, 197.
|
(b) Puerta M.C.; Valerga P. Coord. Chem. Rev. 1999, 193 ~195, 977.
|
|
(c) Wakatsuki Y. J. Organomet. Chem. 2004, 689, 4092.
|
|
(d) Qiu Z.; Xie Z. Sci. China, Ser. B :Chem. 2009, 52, 1544.
|
|
(e) Lynam J.M. Chem. -Eur. J. 2010, 16, 8238.
|
|
(f) Herndon J.W. Coord. Chem. Rev. 2018, 356, 1.
|
|
[2] |
For selected reviews on the organometallic properties of allenylidene complexes, see: (a) Bruce M. I. Chem. Rev. 1998, 98, 2797.
|
(b) Selegue J.P. Coord. Chem. Rev. 2004, 248, 1543.
|
|
(c) Rigaut S.; Touchard D.; Dixneuf P.H. Coord. Chem. Rev. 2004, 248, 1585.
|
|
(d) Che C.; Ho C.; Huang J. Coord. Chem. Rev. 2007, 251, 2145.
|
|
(e) Cadierno V.; Gimeno J. Chem. Rev. 2009, 109, 3512.
|
|
(f) Herndon J.W. Coord. Chem. Rev. 2019, 401, 213051.
|
|
[3] |
For selected reviews on metal vinylidenes and allenylidenes in catalysis, see: (a) Bruneau C.; Dixneuf P. H. Acc. Chem. Res. 1999, 32, 311.
|
(b) Trost B.M.; Toste F.D.; Pinkerton A.B. Chem. Rev. 2001, 101, 2067.
|
|
(c) Miki K.; Uemura S.; Ohe K. Chem. Lett. 2005, 34, 1068.
|
|
(d) Varela J.A.; Saá C. Chem. -Eur. J. 2006, 12, 6450.
|
|
(e) Trost B.M.; McClory A. Chem. -Asian J. 2008, 3, 164.
|
|
Bruneau C.; Dixneuf P.H. Metal Vinylidenes and Allenylidenes in Catalysis :From Reactivity to Applications in Synthesis, WILEY-VCH, Weinheim, Germany, 2008.
|
|
Varela J.A.; González-Rodríguez C.; Saá C. Ruthenium in Catalysis, InTopics in Organometallic Chemistry Series 48, Eds.: Bruneau, C.; Dixneuf, P.H., Springer, Switzerland, 2014, pp.237~288.
|
|
(h) Roh S.W.; Choi K.; Lee C. Chem. Rev. 2019, 119, 4293.
|
|
Gagosz F. Synthesis -Stuttgart 2019, 51, 1087.
|
|
(j) Jin J.-T.; Tao X.-C.; Qian Y.-L. Chin. J. Org. Chem. 2000, 20, 470. (in Chinese)
|
|
( 金军挺, 陶晓春, 钱延龙, 有机化学, 2000, 20, 470.).
|
|
[4] |
Coletti C.; Marrone A.; Re N. Acc. Chem. Res. 20 12, 45, 139.
|
[5] |
(a) Hyder I.; Jiménez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2011, 30, 726.
|
(b) Talavera M.; Bolaño S.; Bravo J.; Castro J.; Garcı́a-Fontán S.; Hermida-Ramón J.M. Organometallics 2013, 32, 4402.
|
|
(c) Serrano-Ruiz M.; Lidrissi C.; Mañas S.; Peruzzini M.; Romerosa A. J. Organomet. Chem. 2014, 751, 654.
|
|
(d) Jiménez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2016, 35, 388 and references therein.
|
|
[6] |
(a) Cadierno V.; Gamasa M.P.; Gimeno J.; Perez-Carreno E.; Ienco A. Organometallics 1998, 17, 5216.
|
(b) Esteruelas M.A.; Gomez A.V.; Lopez A.M.; Onate E.; Ruiz N. Organometallics 1999, 18, 1606.
|
|
(c) Cadierno V.; Conejero S.; Gamasa M.P.; Gimeno J.; Falvello L.R.; Llusar R.M. Organometallics 2002, 21, 3716.
|
|
(d) Saget T.; Cramer N. Angew. Chem., Int. Ed. 2010, 49, 8962.
|
|
(e) Queensen M.J.; Rath N.P.; Bauer E.B. Organometallics 2014, 33, 5052.
|
|
(f) García-de la Arada, I.; Díez, J.; Gamasa, M.P.; Lastra, E. J. Organomet. Chem. 2015, 797, 101.
|
|
[7] |
(a) Bustelo E.; Jimenez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2006, 25, 4019.
|
(b) Pino-Chamorro J.A.; Bustelo E.; Puerta M.C.; Valerga P. Organometallics 2009, 28, 1546.
|
|
[8] |
(a) Trost B.M.; Frederiksen M.U.; Rudd M.T. Angew. Chem., Int. Ed. 2005, 44, 6630.
|
(b) Bruneau C.; Dixneuf P.H. Angew. Chem., Int. Ed. 2006, 45, 2176.
|
|
(c) Liu R.-S. Synlett 2008, 801.
|
|
[9] |
(a) Nishibayashi Y.; Uemura S. Curr. Org. Chem 2006, 10, 135.
|
Nishibayashi Y. Synthesis 2012, 489.
|
|
(c) Sakata K.; Nishibayashi Y. Catal. Sci. Technol. 2018, 8, 12.
|
|
[10] |
Zhang D.-Y.; Hu X.-P. Tetrahedron Lett. 2015, 56, 283.
|
[11] |
Trost B.M.; Flygare J.A. J. Am. Chem. Soc. 1992, 114, 5476.
|
[12] |
(a) Bustelo E.; Dixneuf P.H. Adv. Synth. Catal. 2005, 347, 393.
|
(b) Ma H.W.; Lin Y.C.; Huang S.L. Org. Lett. 2012, 14, 3846.
|
|
[13] |
(a) Yeh K.L.; Liu B.; Lo C.Y.; Huang H.L.; Liu R.S. J. Am. Chem. Soc. 2002, 124, 6510.
|
(b) Yeh K.L.; Liu B.; Lai Y.T.; Li C.W.; Liu R.S. J. Org. Chem. 2004, 69, 4692.
|
|
(c) Shen H.C.; Su H.L.; Hsueh Y.C.; Liu R.S. Organometallics 2004, 23, 4332.
|
|
Propargylic reduction of propargylic alcohols with 2-Propanol via similar hydrogen transfer was reported:.
|
|
(d) Yuki M.; Miyake Y.; Nishibayashi Y. Organometallics 2010, 29, 5994.
|
|
[14] |
Datta S.; Chang C.L.; Yeh K.L.; Liu R.S. J. Am. Chem. Soc. 2003, 125, 9294.
|
[15] |
(a) Cadierno V.; Díez J.; García-Garrido S.E.; Gimeno J. Chem. Commun. 2004, 2716.
|
(b) Cadierno V.; Díez J.; García-Garrido S.E.; Gimeno J.; Nebra N. Adv. Synth. Catal. 2006, 348, 2125.
|
|
(c) Cadierno V.; García-Garrido S.E.; Gimeno J. Adv. Synth. Catal. 2006, 348, 101.
|
|
(d) Onodera G.; Matsumoto H.; Nishibayashi Y.; Uemura Y. Organometallics 2005, 24, 5799.
|
|
[16] |
(a) Tidwell T.T. Angew. Chem., Int. Ed. 2005, 44, 5778.
|
(b) Allen A.D.; Tidwell T.T. Eur. J. Org. Chem. 2012, 2012, 1081.
|
|
(c) Allen A.D.; Tidwell T.T. Chem. Rev. 2013, 113, 7287.
|
|
[17] |
(a) Madhushaw R.J.; Lin M.Y.; Abu Sohel S.M.; Liu R.S. J. Am. Chem. Soc. 2004, 126, 6895.
|
(b) Lin M.Y.; Madhushaw R.J.; Liu R.S. J. Org. Chem. 2004, 69, 7700.
|
|
(c) Lin M.Y.; Maddirala S.J.; Liu R.S. Org. Lett. 2005, 7, 1745.
|
|
(d) Pati K.; Liu R.S. Chem. Commun. 2009, 5233.
|
|
(e) Kim I.; Lee C. Angew. Chem., Int. Ed. 2013, 52, 10023.
|
|
(f) Kim I.; Roh S.W.; Lee D.G.; Lee C. Org. Lett. 2014, 16, 2482.
|
|
(g) Wang Y.; Zheng Z.; Zhang L. Angew. Chem., Int. Ed. 2014, 53, 9572.
|
|
(h) Zheng R.; Wang Y.; Zhang L. Tetrahedron Lett. 2015, 56, 3144.
|
|
(i) Zeng H.; Li C.J. Angew. Chem., Int. Ed. 2014, 53, 13862.
|
|
(j) Yu C.; Ma X.; Chen B.; Tang B.; Paton R.S.; Zhang G. Eur. J. Org. Chem. 2017, 2017, 1561.
|
|
(k) Rong M.G.; Qin T.Z.; Liu X.R.; Wang H.F.; Zi W. Org. Lett. 2018, 20, 6289.
|
|
(l) Zhang W.W.; Gao T.T.; Xu L.J.; Li B.J. Org. Lett. 2018, 20, 6534.
|
|
(m) Álvarez-Pérez A.; Esteruelas M.A.; Izquierdo S.; Varela J.A.; Saá C. Org. Lett. 2019, 21, 5346.
|
|
For a recent review, see:.
|
|
Álvarez-Pérez A.; Varela J.A.; Saá C. Synthesis 2020, 52, 2639.
|
|
[18] |
Brown R.F.C.; Eastwood F.W. The Chemistry of Ketenes, Allenes and Related Compounds, John Wiley& Sons Ltd, New York , 1980, Chapter 19.
|
[19] |
(a) Hart H.; Dean D.L.; Buchanan D.N. J. Am. Chem. Soc. 1973, 95, 6294.
|
(b) Chapman O.L.; Chang C.-C.; Hole J.; Rosenquist N.R.; Tomioka H. J. Am. Chem. Soc. 1975, 97, 22, 6586.
|
|
(c) Meng J.B.; Shen M.Q.; Wang X.H.; Gao Z.H.; Wang H.G.; Matsuura T. Chin. Sci. Bull. 1991, 36, 2056.
|
|
(d) Pietri N.; Monnier M.; Aycard J.P. J. Org. Chem. 1998, 63, 2462.
|
|
(e) Yang C.; Wu W.; Liu K.; Wang H.; Su H. Sci. China :Chem. 2012, 55, 359.
|
|
[20] |
(a) Brown R.F.C.; Jones C.M. Aust. J. Chem. 1980, 33, 1817.
|
(b) Brown R.F.C.; Eastwood F.W.; Chaichit N.; Gatehouse B.M.; Pfeiffer J.M.; Woodroffe D. Aust. J. Chem. 1981, 34, 1467.
|
|
(c) Besida J.; Brown R.F.C. Aust. J. Chem. 1982, 35, 1385.
|
|
(d) Besida J.; Brown R.F.C.; Colmanet S.; Leach D.N. Aust. J. Chem. 1982, 35, 1373.
|
|
(e) Pommelet J.C.; Dhimane H.; Chuche J.; Celerier J.P.; Haddad M.; Lhommet G. J. Org. Chem. 1988, 53, 5680.
|
|
(f) Wentrup C.; Lorencak P. J. Am. Chem. Soc. 1988, 110, 1880.
|
|
(g) Brahms J.C.; Dailey W.P. J. Am. Chem. Soc. 1989, 111, 8940.
|
|
(h) Bencheikh A.; Pommelet J.C.; Chuche J. J. Chem. Soc., Chem. Commun. 1990, 615.
|
|
(i) Chuburu F.; Lacombe S.; Pfisterguillouzo G.; Bencheik A.; Chuche J.; Pommelet J.C. J. Am. Chem. Soc. 1991, 113, 1954.
|
|
(j) Fulloon B.E.; Wentrup C. J. Org. Chem. 1996, 61, 1363.
|
|
Gaber A.A.M.; McNab H. Synthesis -Stuttgart 2001, 2059.
|
|
(l) Halton B.; Dixon G.M.; Jones C.S.; Parkin C.T.; Veedu R.N.; Bornemann H.; Wentrup C. Org. Lett. 2005, 7, 949.
|
|
(m) Andersen H.G.; Wentrup C. Aust. J. Chem. 2012, 65 .
|
|
[21] |
(a) Birum G.H.; Matthews C.N. J. Am. Chem. Soc. 1968, 90, 14, 3842.
|
(b) Taylor G.A. Chem. Commun. (London )1968, 1314.
|
|
(c) Taylor G.A. J. Chem. Soc. 1969, 1755.
|
|
(c) Masters A.P.; Sorensen T.S.; Tran P.M. Can. J. Chem. 1987, 65, 1499.
|
|
[22] |
Cai T.; Yang Y.; Zhang L.; Wen T. Chin. J. Org. Chem. 2018, 38, 2017. (in Chinese)
|
( 蔡涛, 杨玉, 张丽, 温庭斌, 有机化学, 2018, 38, 2017.).
|
|
[23] |
For catalytic nitrogen tranfer to metal vinylidenes with hydrazines for nitrile synthesis, see: (a) Fukumoto Y.; Dohi T.; Masaoka H.; Chatani N.; Murai S. Organometallics 2002, 21, 3845.
|
(b) Fukumoto Y.; Tamura Y.; Iyori Y.; Chatani N. J. Org. Chem. 2016, 81, 3161.
|
|
For stoichiometrc nitrogen tranfer to metal vinylidenes with hydrazines to give nitrile complexes, see: (c) Alt H.G.; Engelhardt H.E.; Steinlein E.; Rogers D. J. Organomet. Chem. 1987, 344, 321.
|
|
(d) Barrett A.G.M.; Carpenter N.E.; Sabat M. J. Organomet. Chem. 1988, 352, C8.
|
|
(e) Albertin G.; Antoniutti S.; Bortoluzzi M.; Botter A.; Castro J. Dalton Trans. 201 5, 44, 3439.
|
|
[24] |
(a) Arshad L.; Jantan I.; Bukhari S.N.; Haque M.A. Front Pharmacol 2017, 8, 22.
|
(b) Hossain M.; Das U.; Dimmock J.R. Eur. J. Med. Chem. 2019, 183, 111687.
|
|
(c) Zhang S.; Neumann H.; Beller M. Chem. Soc. Rev. 2020, 49, 3187.
|
|
[25] |
(a) Reichl K.D.; Dunn N.L.; Fastuca N.J.; Radosevich A.T. J. Am. Chem. Soc. 2015, 137, 5292.
|
(b) Meng L.K.; Kamada Y.; Muto K.; Yamaguchi J.; Itami K. Angew. Chem., Int. Ed. 2013, 52, 10048.
|
|
(c) Liu L.; Lu H.; Wang H.; Yang C.; Zhang X.; Zhang-Negrerie D.; Du Y.F.; Zhao K. Org. Lett. 2013, 15, 2906.
|
|
(d) Li Y.J.; Yang Q.; Yang L.Q.; Lei N.; Zheng K. Chem. Commun. 2019, 55, 4981.
|
|
[26] |
Bruce M.I.; Low P.J.; Tiekink E.R.T. J. Organomet. Chem. 1999, 572, 3.
|
[27] |
Following Saá’s conditions for the oxidative amidation of alkynes(see Ref.[17m]),1 equiv. of NaPF6 was used. The PF6 – anion is prone to dissociate into PF5 and F– at elevated temperature and the residual water presented in the solution may cause further hydrolysis of the resulting PF5 species to form phosphate. See: (a) Odedra A.; Datta S.; Liu R. S. J. Org. Chem. 2007, 72, 3289.
|
(b) Krossing I.; Raabe I. Chem. -Eur. J. 2004, 10, 5017.
|
|
(c) Krossing I.; Raabe I. Angew. Chem., Int. Ed. 2004, 43, 2066.
|
|
[28] |
The DCE solvent may undergo dissociation to eliminate hydrogen chloride after prolonged heating. See: (a) Ho, M. L.; Flynn, A. B.; Ogilvie, W. W.J. Org. Chem. 2007, 72, 977.
|
(b) He W.; Xie L.; Xu Y.; Xiang J.; Zhang L. Org. Biomol. Chem. 2012, 10, 3168.
|
|
(c) Qian G.; Hong X.; Liu B.; Mao H.; Xu B. Org. Lett. 2014, 16, 5294.
|
|
[29] |
(a) Pavlik S.; Mereiter K.; Puchberger M.; Kirchner K. J. Organomet. Chem. 2005, 690, 5497.
|
(b) Hartmann S.; Winter R.F.; Brunner B.M.; Sarkar B.; Knodler A.; Hartenbach I. Eur. J. Inorg. Chem. 2003, 876.
|
|
(c) Chan W.C.; Lau C.P.; Chen Y.Z.; Fang Y.Q.; Ng S.M.; Jia G.C. Organometallics 1997, 16, 34.
|
|
(d) Buriez B.; Burns I.D.; Hill A.F.; White A.J.P.; Williams D.J.; Wilton-Ely J.D.E. T. Organometallics 1999, 18, 1504.
|
|
[30] |
(a) Picquet M.; Bruneau C.; Dixneuf P.H. Chem. Commun. 1998, 2249.
|
(b) Furstner A.; Liebl M.; Lehmann C.W.; Picquet M.; Kunz R.; Bruneau C.; Touchard D.; Dixneuf P.H. Chem. -Eur. J. 2000, 6, 1847.
|
|
[31] |
Selegue J.P. J. Am. Chem. Soc. 1983, 105, 5921.
|
[32] |
(a) Lukehart C.M.; Zelie J.V. J. Organomet. Chem. 1975, 97, 421.
|
(b) Wulff W.D.; Yang D.C. J. Am. Chem. Soc. 1983, 105, 6726.
|
|
(c) Dötz K.H. Angew. Chem., Int. Ed. 1984, 23, 587.
|
|
(d) Barrett A.G.M.; Mortier J.; Sabat M.; Sturgess M.A. Organometallics 1988, 7, 2553.
|
|
(e) Gibert M.; Ferrer M.; Lluch A.M.; Sánchez-Baeza F.; Messeguer A. J. Org. Chem. 1999, 64, 1591.
|
|
(f) Ruan W.; Shi C.; Sung H.H.Y.; Williams I.D.; Jia G. J. Organomet. Chem. 2019, 880, 7.
|
|
[33] |
(a) Trost B.M.; Rhee Y.H. J. Am. Chem. Soc. 1999, 121, 11680.
|
(b) Trost B.M.; Rhee Y.H. J. Am. Chem. Soc. 2002, 124, 2528.
|
|
(c) Taduri B.P.; Sohel S.M.A.; Cheng H.M.; Lin G.Y.; Liu R.S. Chem. Commun. 2007, 2, 2530.
|
|
[34] |
Bruce M.I.; Hameister C.; Swincer A.G.; Wallis R.C. Inorg. Synth. 1990, 28, 270.
|
[35] |
Gluyas J.B.G.; Brown N.J.; Farmer J.D.; Low P.J. Aust. J. Chem. 2017, 70, 113.
|
[36] |
Cai T.; Yang Y.; Li W.W.; Qin W.B.; Wen T.B. Chem. -Eur. J. 2018, 24, 1606.
|
[37] |
Alcock N.W.; Burns I.D.; Claire K.S.; Hill A.F. Inorg. Chem. 1992, 31, 2906.
|
[38] |
Boren B.C.; Narayan S.; Rasmussen L.K.; Zhang L.; Zhao H.T.; Lin Z.Y.; Jia G.C.; Fokin V.V. J. Am. Chem. Soc. 200 8, 130, 14900.
|
[39] |
(a) Harada S.; Yano H.; Obora Y. ChemCatChem 2013, 5, 121.
|
(b) Han Y.P.; Song X.R.; Qiu Y.F.; Hao X.H.; Wang J.; Wu X.X.; Liu X.Y.; Liang Y.M. J. Org. Chem. 2015, 80, 9200.
|
|
(c) Groundwater P.W.; Garnett I.; Morton A.J.; Sharif T.; Coles S.J.; Hursthouse M.B.; Nyerges M.; Anderson R.J.; Bendell D.; McKillop A.; Zhang W. J. Chem. Soc., Perkin Trans. 1 2001, 2781.
|
|
(d) Ueda S.; Okada T.; Nagasawa H. Chem. Commun. 2010, 46, 2462.
|
|
(e) Reeves D.C.; Rodriguez S.; Lee H.; Haddad N.; Krishnamurthy D.; Senanayake C.H. Org. Lett. 2011, 13, 2495.
|
|
(f) Song C.E.; Jung D.U.; Choung S.Y.; Roh E.J.; Lee S.G. Angew. Chem., Int. Ed. 2 004, 43, 6183.
|
|
(g) Inamoto K.; Okawa H.; Taneda H.; Sato M.; Hirono Y.; Yonemoto M.; Kikkawa S.; Kondo Y. Chem. Commun. 2012, 48, 9771.
|
|
(h) Ito Y. Tetrahedron 2007, 63, 3108.
|
[1] | 王小蝶, 刘春玉, 苗玲玲, 薛冰洁, 朱新举, 宋冰, 郝新奇, 刘国际. 新型手性三联吡啶钌(II)配合物催化酮到醇的氢转移反应[J]. 有机化学, 2021, 41(4): 1543-1550. |
[2] | 刘思展, 崔明月, 王博文, 胡春梅, 郑莹莹, 李晶, 徐学涛, 王震, 王少华. 三乙胺促进的环丙烯酮和α-卤代异羟肟酸酯的环化反应合成多取代6H-1,3-噁嗪-6-酮[J]. 有机化学, 2021, 41(4): 1622-1630. |
[3] | 李鑫玲, 刘会丽, 张顺吉. 炔丙醇与烯醇硅醚的直接亲核取代反应[J]. 有机化学, 2021, 41(1): 407-411. |
[4] | 林聪, 高震博, 腾秋汛, 薛博文, 李小花, 高飞, 申亮. 钌(II)催化的亚胺酯碳-氢键官能化/环化反应合成烯基取代的二氢异喹诺酮[J]. 有机化学, 2020, 40(9): 2863-2870. |
[5] | 王溯, 张友璐, 巴妍妍, 张京玉, 孙德梅. 立体选择性烯烃复分解反应的研究及应用[J]. 有机化学, 2020, 40(9): 2725-2741. |
[6] | 方霄龙, 段宁, 章敏, 李斌. 金属-配体协同作用下钌催化剂用于草酸酯加氢制乙二醇的研究进展[J]. 有机化学, 2020, 40(9): 2692-2701. |
[7] | 赵转霞, 王君姣, 黄丹凤, 杨政, 赵芳霞, 虎永琴, 徐炜刚, 胡雨来. 锡粉促进下3-芳基-3-羟基-2-氧化吲哚的烯丙基化反应研究[J]. 有机化学, 2020, 40(7): 2026-2034. |
[8] | 张顺吉, 刘会丽. 硫酸催化的炔丙醇快速亲核取代反应[J]. 有机化学, 2020, 40(5): 1257-1265. |
[9] | 陈训, 王颖, 王烁今, 孔杜林, 文丽君, 翟锐锐, 赵珂, 白丽丽, 李友宾. 钌(II)-催化偶氮苯与乙醛酸乙酯的环化反应构建3-羧酸酯吲唑[J]. 有机化学, 2020, 40(3): 688-693. |
[10] | 刘金宝, 李鹏, 姚子健. 含半夹心铱/铑/钌结构基元的离散型金属环状化合物的研究进展[J]. 有机化学, 2020, 40(2): 364-375. |
[11] | 田忠贞, 王先浩, 李冬梅. 新型含二硫环戊烯酮结构新烟碱类衍生物的合成与生物活性[J]. 有机化学, 2020, 40(12): 4332-4338. |
[12] | 李毅, 万结平. 磺酰肼和二硫缩烯酮区域选择性环化反应合成3-烷硫基取代吡唑[J]. 有机化学, 2020, 40(11): 3889-3894. |
[13] | 方霄龙, 章敏, 段宁, 汪新, 朱红平. 新型膦胺配体羰基钌化合物的合成及其催化性能研究[J]. 有机化学, 2020, 40(1): 226-231. |
[14] | 马奔, 王刚刚, 周红艳, 杨靖亚. 碱金属盐催化1,2,4-三唑与α,β-不饱和酮及二酰亚胺的氮杂Michael反应[J]. 有机化学, 2020, 40(1): 115-124. |
[15] | 胡博文, 张宇哲, 尹鸽平, 陈大发. NN型双齿半夹心Ru(II)化合物:无受体脱氢环化合成喹啉和吡咯衍生物的催化剂[J]. 有机化学, 2020, 40(1): 53-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||