有机化学 ›› 2021, Vol. 41 ›› Issue (1): 384-393.DOI: 10.6023/cjoc202005021 上一篇 下一篇
研究论文
王向阳a, 高君青a, 徐学涛a,*(), 方萍b,*(
), 梅天胜b
收稿日期:
2020-05-09
修回日期:
2020-07-28
发布日期:
2020-08-06
通讯作者:
徐学涛, 方萍
作者简介:
基金资助:
Xiangyang Wanga, Junqing Gaoa, Xuetao Xua,*(), Ping Fangb,*(
), Tiansheng Meib
Received:
2020-05-09
Revised:
2020-07-28
Published:
2020-08-06
Contact:
Xuetao Xu, Ping Fang
Supported by:
文章分享
砜是天然产物和活性分子中常见的结构, 也是合成反应的重要中间体. 利用5-氯-8-氨基喹啉(AQ')作为双齿导向基团, 以各种芳基亚磺酸钠为磺酰化试剂, 通过铜催化实现了邻位C(sp 2)—H直接磺酰化. 该反应具有较高的官能团兼容性和广泛的底物范围, 适用于具有双取代基和稠环的底物. 另外, AQ'作为双齿导向基团易于脱去, 为合成砜类化合物提供了一种新型的方法. 更重要的是该反应放大至克级规模依然具有良好收率.
王向阳, 高君青, 徐学涛, 方萍, 梅天胜. 铜催化的5-氯-8-氨基喹啉导向的邻位磺酰化[J]. 有机化学, 2021, 41(1): 384-393.
Xiangyang Wang, Junqing Gao, Xuetao Xu, Ping Fang, Tiansheng Mei. Copper-Catalyzedortho-Sulfonylation with 5-Chloro-8-aminoquinoline Group-Directed[J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 384-393.
Entry | [M] | Additive | Base | Solvent | Yield b /% |
---|---|---|---|---|---|
1 c | CuCl | PhCOOH | KOPiv | DMF | 38 |
2 c | Cu(OAc) 2 •H 2O | PhCOOH | KOPiv | DMF | 46 |
3 c | CuBr 2 | PhCOOH | KOPiv | DMF | 10 |
4 c | Cu(OTf) 2 | PhCOOH | KOPiv | DMF | 46 |
5 c | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 59 |
6 c | — | PhCOOH | KOPiv | DMF | Trace |
7 cd | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 45 |
8 e | Cu(OAc) 2 | 3,4-Dimethylbenzoic acid | KOPiv | DMF | 66 |
9 e | Cu(OAc) 2 | 2,4,6-Trimethylbenzoic acid | KOPiv | DMF | 57 |
10 e | Cu(OAc) 2 | 4- tert-Butylbenzoic acid | KOPiv | DMF | 58 |
11 e | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 72 |
12 f | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 62 |
13 | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 71 |
14 | Cu(OAc) 2 | PhCOOH | — | DMF | 13 |
15 | Cu(OAc) 2 | PhCOOH | KOAc | DMF | 60 |
16 | Cu(OAc) 2 | PhCOOH | NaOPiv •H 2O | DMF | 61 |
17 | Cu(OAc) 2 | PhCOOH | K 2CO 3 | DMF | 36 |
18 | Cu(OAc) 2 | PhCOOH | KOPiv | DMSO | 66 |
19 | Cu(OAc) 2 | PhCOOH | KOPiv | DCE | 17 |
20 | Cu(OAc) 2 | PhCOOH | KOPiv | CH 3CN | 46 |
21 | Cu(OAc) 2 | PhCOOH | KOPiv | 1,4-Dioxane | 17 |
22 | Cu(OAc) 2 (10 mol%) | PhCOOH (20 mol%) | KOPiv | DMF | 58 |
23 | Cu(OAc) 2 (20 mol%) | PhCOOH (30 mol%) | KOPiv | DMF | 81 (79) g |
24 | Cu(OAc) 2 (20 mol%) | PhCOOH (40 mol%) | KOPiv | DMF | 73 |
Entry | [M] | Additive | Base | Solvent | Yield b /% |
---|---|---|---|---|---|
1 c | CuCl | PhCOOH | KOPiv | DMF | 38 |
2 c | Cu(OAc) 2 •H 2O | PhCOOH | KOPiv | DMF | 46 |
3 c | CuBr 2 | PhCOOH | KOPiv | DMF | 10 |
4 c | Cu(OTf) 2 | PhCOOH | KOPiv | DMF | 46 |
5 c | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 59 |
6 c | — | PhCOOH | KOPiv | DMF | Trace |
7 cd | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 45 |
8 e | Cu(OAc) 2 | 3,4-Dimethylbenzoic acid | KOPiv | DMF | 66 |
9 e | Cu(OAc) 2 | 2,4,6-Trimethylbenzoic acid | KOPiv | DMF | 57 |
10 e | Cu(OAc) 2 | 4- tert-Butylbenzoic acid | KOPiv | DMF | 58 |
11 e | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 72 |
12 f | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 62 |
13 | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 71 |
14 | Cu(OAc) 2 | PhCOOH | — | DMF | 13 |
15 | Cu(OAc) 2 | PhCOOH | KOAc | DMF | 60 |
16 | Cu(OAc) 2 | PhCOOH | NaOPiv •H 2O | DMF | 61 |
17 | Cu(OAc) 2 | PhCOOH | K 2CO 3 | DMF | 36 |
18 | Cu(OAc) 2 | PhCOOH | KOPiv | DMSO | 66 |
19 | Cu(OAc) 2 | PhCOOH | KOPiv | DCE | 17 |
20 | Cu(OAc) 2 | PhCOOH | KOPiv | CH 3CN | 46 |
21 | Cu(OAc) 2 | PhCOOH | KOPiv | 1,4-Dioxane | 17 |
22 | Cu(OAc) 2 (10 mol%) | PhCOOH (20 mol%) | KOPiv | DMF | 58 |
23 | Cu(OAc) 2 (20 mol%) | PhCOOH (30 mol%) | KOPiv | DMF | 81 (79) g |
24 | Cu(OAc) 2 (20 mol%) | PhCOOH (40 mol%) | KOPiv | DMF | 73 |
[1] |
Patai S.; Rappoport C.Z.; Stirling J.M. The Chemistry of Sulfones and Sulfoxides, Wiley, New York , 1988.
|
[2] |
Lopez de Compadre, R.L.; Pearlstein, R.A.; Hopfinger, A.J.; Seyde, J.K. J. Med. Chem. 1987, 30, 900.
|
[3] |
Iversen P.; Tyrrell C.J.; Kaisary A.V.; Anderson J.B.; Van Poppel, H.E.I. N.; Tammela, T.L.; Melezinek, I. J. Urol. 2000, 164, 1579.
|
[4] |
Tanetani Y.; Kaku K.; Kawai K.; Fujioka T.; Shimizu T. Pestic. Biochem. Physiol. 2009, 95, 47.
|
[5] |
Otzen T.; Wempe E.G.; Kunz B.; Bartels R.; Lehwark-Yvetot G.; Hansel W.; K. Schaper, J.; Seydel, J.K. J. Med. Chem. 2004, 47, 240.
|
[6] |
Simpkins N.S. Sulphones in Organic Synthesis, Pergamon Press, Oxford , 1993.
|
[7] |
Ramberg L.; B-cklund B. Ark. Kemi, Mineral Geol. 1940, 27, 1.
|
[8] |
Julia M.; Paris J.-M. Tetrahedron Lett. 1973, 14, 4833.
|
[9] |
For recent examples, see: (a) Yuan, Z.; Wang, H.-Y.; Mu, X. Chen, P.; Guo, Y.-L.; Liu, G.J. Am. Chem. Soc. 2015, 137, 2468.
|
(b) Tang X.; Huang L.; Xu Y.; Yang J.; Wu W.; Jiang H. Angew. Chem., Int. Ed. 2014, 53, 4205.
|
|
(c) Xi Y.; Dong B.; McClain E.J.; Wang Q.; Gregg T.L.; Akhmedov N.G.; Petersen J.L.; Shi X. Angew. Chem., Int. Ed. 2014, 53, 4657.
|
|
(d) Handa S.; Fennewald J.C.; Lipshutz B.H. Angew. Chem., Int. Ed. 201 4, 53, 3432.
|
|
(e) Lu Q.; Zhang J.; Zhao G.; Qi Y.; Wang H.; Lei A. J. Am. Chem. Soc. 2013, 135, 11481.
|
|
(f) Liu Q.; Zhang J.; Wei F.; Qi Y.; Wang H.; Liu Z.; Lei A. Angew. Chem., Int. Ed. 2013, 52, 7156.
|
|
(g) Yuan G.; Zheng J.; Gao X.; Li X.; Huang L.; Chen H.; Jiang H. Chem. Commun. 2012, 48, 7513.
|
|
(h) Wu X.-S.; Chen Y.; Li M.-B.; Zhou M.-G.; Tian S.-K. J. Am. Chem. Soc. 2012, 134, 14694.
|
|
[10] |
Zhao X.; Dimitrijević E.; Dong V.M. J. Am. Chem. Soc. 2009, 131, 3466.
|
[11] |
Liu N.-W.; Liang S.; Manolikakes G. Synthesis 201 6, 48, 1939.
|
For selected reviews on transition-metal-catalyzed C—H functionalization, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.Chem. Soc. Rev. 2009, 38, 3242.
|
|
(b) Chen X.; Engle K.M.; Wang D.-H.; Yu J.-Q. Angew Chem., Int. Ed. 2009, 48, 5094.
|
|
(c) Lyons T.W.; Sanford M.S. Chem. Rev. 2010, 110, 1147.
|
|
(d) Arockiam P.B.; Bruneau C.; Dixneuf P.H. Chem. Rev. 2012, 112, 5879.
|
|
(e) Ackermann L.C. Acc. Chem. Res. 2014, 47, 281.
|
|
(f) Pei P.; Zhang F.; Yi H.; Lei A. Acta Chim. Sinica 2017, 75, 15. (in Chinese)
|
|
( 裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.).
|
|
(g) Du J.-Y.; Xia C.-G.; Sun, W. Acta Chim. Sinica. 2018, 76, 329. (in Chinese)
|
|
( 杜俊毅, 夏春谷, 孙伟, 化学学报, 2018, 76, 329.).
|
|
(h) For selected reviews on Directing-Group see: Daugulis O.; Do H.-Q.; Shabashov D. Acc. Chem. Res. 2009, 42, 1074.
|
|
(i) Li D.-D.; He C.-L.; Cai H.-T.; Wang G.-W. Chin. J. Org. Chem. 2013, 33, 203. (in Chinese)
|
|
( 李丹丹, 何程林, 蔡海婷, 王官武, 有机化学, 2013, 33, 203.).
|
|
(j) Wang S.; Yan F.; Wang L.-S.; Zhu L. Chin. J. Org. Chem. 2018, 38, 291. (in Chinese)
|
|
( 汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.).
|
|
(k) Luo F. Chin. J. Org. Chem. 2019, 39, 3084. (in Chinese)
|
|
( 罗飞华, 有机化学, 2019, 39, 3084.).
|
|
For examples on Directing-Group, see:.
|
|
(e) Zhang Q.; Yin X.-S.; Zhao S.; Fang S.-L.; Shi B.-F. Chem. Commun. 2014, 50, 8353.
|
|
(l) Yang Q.-L.; Wang X.-Y.; Wang T.-L.; Yang X.; Liu D.; Tong X.; Wu X.-Y.; Mei T.-S. Org. Lett. 2019, 21, 2645.
|
|
(m) Yang Q.-L.; Wang X.-Y.; Weng X.-J.; Yang X.; Xu X.-T.; Tong X.; Fang P.; Wu X.-Y.; Mei T.-S. Acta Chim. Sinica 2019, 77, 866. (in Chinese)
|
|
( 杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.).
|
|
[12] |
For selected reviews on metals-catalyzed formation of C-S, see: (a) Liang, S.; Shaaban, S.; Liu, N.-W.; Hofman, K. Adv. Organomet. Chem. 2018, 69, 135.
|
For examples on metal-catalyzed formation of C—S, see:.
|
|
(b) Chen X.; Hao X.-S.; Goodhue C.E.; Yu J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
|
|
(c) Liu S.-L.; Li X.-H.; Zhang S.-S.; Hou S.-K.; Yang G.-C.; Gong, J-F.; Song, M.-P.Adv. Synth. Catal. 2017, 359, 2241.
|
|
(d) Liu C.; Fang Y.; Wang S.-Y.; Ji S.-J. ACS Catal. 2019, 9, 8910.
|
|
(e) Wang X.; Yi X.; Xu H.; Dai H.-X. Org. Lett. 2019, 21, 5981.
|
|
(f) Chen J.; Chen S.; Xu X.; Tang Z.; Au C.-T.; Qiu R. J. Org. Chem. 2016, 81, 3246.
|
|
(g) Liu D.; Ma H.-X.; Fang P.; Mei T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
|
|
(h) Meng Y.; Wang M.; Jiang X. Angew. Chem., Int. Ed. 2020, 59, 134.
|
|
[13] |
Zhao X.; Dimitrijević E.; Dong V.M. J. Am. Chem. Soc. 2009, 131, 3466.
|
[14] |
For selected reviews on copper-catalyzed/mediated C—H sulfonylation see: (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
|
(b) Campbell A.N.; Stahl S.S. Acc. Chem. Res. 2012, 45, 851.
|
|
(c) Zhang C.; Tang C.; Jiao N. Chem. Soc. Rev. 2012, 41, 3464.
|
|
(d) Wendlandt A.E.; Suess A.M.; Stahl S.S. Angew. Chem., Int. Ed. 2011, 50, 11062.
|
|
(e) Daugulis O.; Do H.-Q.; Shabashov D. Acc. Chem. Res. 2009, 42, 1074.
|
|
For examples on copper-catalyzed/mediated C( sp2 )—H sulfonylation, see:.
|
|
(g) Uemura T.; Imoto S.; Chatani N. Chem. Lett. 2006, 35, 842.
|
|
(h) Peng J.; Chen M.; Xie Z.; Luo S.; Zhu Q. Org. Chem. Front. 2014, 1, 777.
|
|
(i) Peng J.; Xie Z.; Chen M.; Wang J.; Zhu Q. Org. Lett. 20 14, 16, 4702.
|
|
(j) Hao X.-Q.; Chen L.-J.; Ren B.; Li L.-Y.; Yang X.-Y.; Gong J.-F.; Niu J.-L.; Song M.-P. Org. Lett. 2014, 16, 1104.
|
|
(k) Guo Y.; Liu Z.; Zhu M.; Li L.; Li J.; Zou D.; Wu Y.; Wu Y. Chin. J. Org. Chem. 2020, 40, 724. (in Chinese)
|
|
( 郭圆圆, 刘振伟, 朱明祥, 李琳琳, 李敬亚, 邹大鹏, 吴豫生, 吴养洁, 有机化学, 2020, 40, 724).
|
|
(l) Fan C.-L.; Zhang L.-B.; Liu J.; Hao X.-Q.; Niu J.-L.; Song M.-P. Org. Chem. Front. 2019, 6, 2215.
|
|
For selected reviews on other metals-catalyzed/mediated sulfonylation, see:.(m) Liu J.; Zheng L. Adv. Synth. Catal. 2019, 361, 1710.
|
|
(n) Shaaban S.; Liang S.; Liu N.-W.; Manolikakes G. Org. Biomol. Chem. 2017, 15, 1947.
|
|
For examples on other metals-catalyzed/mediated sulfonylation,see: (o) Karmakar U.; Samanta. R.J. Org. Chem. 2019, 84, 2850.
|
|
(p) Kramer P.; Krieg S.-C.; Kelm H. Org. Biomol. Chem. 2019, 17, 5538.
|
|
[15] |
(a) Liang S.; Liu N.-W.; Manolikakes G. Adv. Synth. Catal. 2016, 358, 159.
|
(b) Liu J.; Yu L.; Zhuang S.; Gui Q.; Chen X.; Wang W.; Tan Z. Chem. Commun. 2015, 51, 6418.
|
|
(c) Rao W.-H.; Shi B.-F. Org. Lett. 2015, 17, 2784.
|
|
(d) Liu S.-L.; Li X.-H.; Zhang S.-S.; Hou S.-K.; Yang G.-C.; Gong J.-F.; Song M.-P. Adv. Synth. Catal. 2017, 359, 2241.
|
|
(e) Rao W.-H.; Zhan B.-B.; Chen K.; Ling P.-X.; Zhang Z.-Z.; Shi B.-F. Org. Lett. 2015, 17, 3552.
|
|
(f) Wu Z.; Song H.; Cui X.; Pi C.; Du W.; Wu Y. Org. Lett. 2013, 15, 1270.
|
|
(g) Yokota A.; Chatani N. Chem. Lett. 2015, 44, 902.
|
|
(h) Reddy V.P.; Qiu R.; Iwasaki T.; Kambe N. Org. Biomol. Chem. 2015, 13, 6803.
|
|
(i) Xia H.; An Y.; Zeng X.; Wu J. Chem. Commun. 2017, 53, 12548.
|
|
[16] |
(a) Liang H.-W.; Jiang K.; Ding W.; Yuan Y.; Shuai L.; Chen Y.-C.; Wei Y. Chem. Commun. 2015, 51, 16928.
|
(b) Qiao H.; Sun S.; Yang F.; Zhu Y.; Zhu W.; Dong Y.; Wu Y.; Kong X.; Jiang L.; Wu Y. Org. Lett. 2015, 17, 6086.
|
|
(c) Wei J.; Jiang J.; Xiao X.; Lin D.; Deng Y.; Ke Z.; Jiang H.; Zeng W. J. Org. Chem. 2016, 81, 946.
|
|
(d) Xu J.; Shen C.; Zhu X.; Zhang P.; Ajitha M.J.; Huang K.-W.; An Z.; Liu X. Chem. -Asian J. 2016, 11, 882.
|
|
(e) Li J.-M.; Weng J.; Lu G.; Chan A.S.C. Tetrahedron Lett. 2016, 57, 2121.
|
|
(f) Liang S.; Manolikakes G. Adv. Synth. Catal. 2016, 358, 2371.
|
|
(g) Li J.-M.; Wang Y.-H.; Yu Y.; Wu R.-B.; Weng J.; Lu G.. ACS Catal. 2017, 7, 2661.
|
|
(h) Xia C.; Wang K.; Xu J.; Wei Z.; Shen C.; Duan G.; Zhu Q.; Zhang P. RSC Adv. 2016, 6, 37173.
|
|
(i) Liang S.; Bolte M.; Manolikakes G. Chem. -Eur. J. 2017, 23, 96.
|
|
(j) Bai P.; Sun S.; Li Z.; Qiao H.; Su X.; Yang F.; Wu Y.; Wu Y. J. Org. Chem. 2017, 82, 12119.
|
|
(k) Chen G.; Zhang X.; Zeng Z.; Peng W.; Liang Q.; Liu J. ChemistrySelect 2017, 2, 1979.
|
|
(l) Wang K.; Wang G.; Duan G.; Xia C. RSC Adv. 2017, 7, 51313.
|
|
(m) Xia H.; An Y.; Zeng X.; Wu J. Org. Chem. Front. 2018, 5, 366.
|
|
[17] |
(a) Raziullah.; Kumar, M.; Kant, R.; Koley, D. Adv. Synth. Catal. 2019, 361, 1.
|
(b) Gandeepan P.; Koeller J.; Ackermann L. ACS Catal. 2017, 7, 1030.
|
|
(c) Ahmad A.; Dutta H.S.; Khan B.; Kant R.; Koley D. Adv. Synth. Catal. 2018, 360, 1644.
|
|
(d) Xu H.; Qiao X.; Yang S.; Shen Z. J. Org. Chem. 2014, 79, 4414.
|
|
(e) Guo X.X.; Gu D.W.; Wu Z.X.; Zhang W.B. Chem. Rev. 2015, 115, 1622.
|
|
(f) Huffman L.M.; Stahl S.S. J. Am. Chem. Soc. 2008, 130, 9196.
|
|
(g) King A.E.; Huffman L.M.; Casitas A.; Costas M.; Ribas X.; Stahl S.S. J. Am. Chem. Soc. 2010, 132, 12068.
|
|
(h) Yao B.; Wang Z.-L.; Zhang H.; Wang D.-X.; Zhao L.; Wang M.-X. J. Org. Chem. 2012, 77, 3336.
|
|
(i) Yao B.; Wang D.-X.; Huang Z.-T.; Wang M.-X. Chem. Commun. 2009, 2899.
|
|
[18] |
Holmes C.W.N.; Loudon J.D. J. Chem. Soc. 1940, 1521.
|
[1] | 陈鑫, 陈春霞, 彭进松. 纤维素及其衍生物负载铜催化有机反应的研究进展[J]. 有机化学, 2021, 41(4): 1319-1336. |
[2] | 周敦, 樊爱红, 李翔, 陈春霞, 孙鹏, 彭进松. 铜催化羧酸与芳氨基甲酰氯的脱羧交叉偶联[J]. 有机化学, 2021, 41(3): 1146-1152. |
[3] | 刘晓涛, 刘鑫, 叶龙武. 基于叠氮-炔酰胺环化的铜催化碳氢键和氮氢键插入反应研究[J]. 有机化学, 2021, 41(3): 1207-1215. |
[4] | 韩博士, 时郑, 何慧红, 张兴华. 铜催化芳基(或烷基)卤化物选择性烯丙基化反应研究[J]. 有机化学, 2021, 41(2): 695-701. |
[5] | 赵苏艳, 宫雪芹, 甘子玉, 颜秋莉, 刘学良, 杨道山. 以氰甲基亚磷酸酯为含膦试剂的铜催化膦酰化异喹啉酮类化合物的高效合成[J]. 有机化学, 2021, 41(1): 258-266. |
[6] | 秦锋, 汤琳, 黄飞, 李晓悦, 张武. 铜催化氧化和Aza-Diels-Alder反应三组分合成喹啉[J]. 有机化学, 2021, 41(1): 318-324. |
[7] | 张亚辉, 刘洋, 缪建康, 郝文燕. 铜催化邻烯基芳基异硫氰酸酯与叠氮化钠串联双环化反应合成5H-苯并四氮唑并噻嗪化合物[J]. 有机化学, 2020, 40(8): 2426-2432. |
[8] | 武力左, 张峰源, 章振涛, 尚垒, 刘宇. Ming-Phos/铜催化的甲亚胺叶立德与三氟甲基烯酮的不对称[3+2]环加成反应[J]. 有机化学, 2020, 40(8): 2460-2467. |
[9] | 黄帅帅, 聂一雪, 杨晶晶, 郑战江, 曹建, 徐征, 徐利文. 铜催化二氟乙醇的芳基醚化反应及其机理研究[J]. 有机化学, 2020, 40(7): 2018-2025. |
[10] | 刘爱遥, 刘江, 梅海波, Gerd-Volker Röschenthaler, 韩建林. Selectfluor作用下二芳基二硫醚和醇的双亚磺酰化反应制备亚磺酸酯[J]. 有机化学, 2020, 40(7): 1926-1933. |
[11] | 刘博瑜, 徐仙君, 黄立梁, 冯煌迪. 铜(I)催化丙炔酸、仲胺、醛和甲醛一锅法交叉偶联构建非对称1,4-二氨基丁炔[J]. 有机化学, 2020, 40(5): 1290-1296. |
[12] | 王才, 周锋, 周剑. 铜催化的不对称叠氮和炔烃的环加成反应的研究进展[J]. 有机化学, 2020, 40(10): 3065-3077. |
[13] | 郎勃, Muhammad Suleman, 吕萍, 王彦广. 铜(I)促进的3-重氮吲哚-2-亚胺与AgSCF3的三氟甲硫基化反应:3-三氟甲硫基-2-氨基吲哚的合成[J]. 有机化学, 2020, 40(10): 3300-3306. |
[14] | 兰天磊, 张越, 刘伟, 席婵娟, 陈超. 咔唑基高价碘试剂参与的活化芳烃直接咔唑化反应研究[J]. 有机化学, 2019, 39(8): 2166-2174. |
[15] | 任培星, 齐林, 方卓越, 吴天舒, 高雅蒙, 沈松, 宋金燕, 王力竞, 李玮. 铜催化β,γ-不饱和腙与二硫/硒化物的硫/硒胺基化反应:合成硫/硒化吡唑啉类化合物[J]. 有机化学, 2019, 39(6): 1776-1786. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||