·研究论文·

微波合成水杨酸异丙酯

栗云天^a 尹应武^{*} ^a ,^b

(^a 清华大学化学系 北京 100084) (^b 清华紫光大厦 北京 100084)

摘要 研究了微波合成水杨酸异丙酯的工艺,与常规方法相对比,发现利用微波合成水杨酸异丙酯具有反应速度快、转化率高、杂质含量小、后处理简单、无三废排放等优点. 关键词 微波,水杨酸异丙酯,合成

Synthesis of Isopropyl Salicylate Using Microwave Irradiation

LI , Yun-Tian^a YIN , Ying-Wu^{*}, a, b

(^a Department of Chemistry , Tsinghua University , Beijing 100084)

(^b Tsinghua University , Beijing 100084)

Abstract A new method for synthesizing isopropyl salicylate using microwave irradiation has been studied. Compared with conventional heating method, microwave irradiation enjoys such advantages as faster reactions, higher yields and pure products.

Keywords microwave irradiation, isopropyl salicylate, synthesis

水杨酸异丙酯又称邻羟基苯甲酸异丙酯 ,是一种重要的有机化工原料和中间体 ,可用作溶剂、催化剂、塑料助剂以及合成医药、农药等.由于水杨酸异丙酯是邻位有羟基的苯甲酸与仲醇反应生成的酯 ,两种反应物的空间位阻均较大 ,因而制备上较困难.水杨酸异丙酯的工业合成主要有三种方法 17 :两段升温硫酸催化法、水杨酰氯法、混合酸催化法 ,另外还有专利报道利用水杨酸与丙稀的直接催化合成法 21.微波是一种高频电磁波 ,它能促进许多化学反应的进行 3~71 具有反应速度快、选择性好的特点.本文使用微波合成了水杨酸异丙酯 ,确定了杂质成分 对工艺加以优化 ,并与常规方法进行了对比.

1 实验部分

1.1 主要仪器与试剂 水杨酸、异丙醇、浓硫酸、对甲苯磺酸、硼酸、草

酸均为分析纯. Bruker AVANCE DPX300 300 MHz 超屏蔽核磁共振仪 北京分析仪器厂 SP3400 毛细管气相色谱 ;岛津 GCMS-QP5050A 气相色谱 – 质谱联用仪 ;LG 微波炉 功率 800 W ,工作频率 2450 MHz.

1.2 微波合成水杨酸异丙酯

向水杨酸 6.92~g、异丙醇 6.0~g($n_{\text{水杨酸}}: n_{\text{异丙醇}} = 1:2$)中加入 5 滴浓 H_2SO_4 ,封闭体系中微波全功率加热回流 ,温度保持在 90~% .

向水杨酸 6.92~g、异丙醇 15.0~g ($n_{x \mbox{N} \mbox{R}}: n_{\mbox{F} \mbox{R} \mbox{R}}=$ 1:5)中加入 5 滴浓 $H_2 SO_4$,封闭体系中微波全功率加热回流 温度保持在 90~% .

向水杨酸 6.92 g、异丙醇 6.0 g($n_{N \text{M}}$ ki n_{FR} p = 1:2)中投入催化剂. 催化剂质量占投入水杨酸质量的 10%,催化剂组分为对甲苯磺酸、硼酸、硫酸和草酸 其质量百分比组成为: $m_{\text{对甲苯磺酸}}: m_{\text{硼酸}}: m_{\text{硫酸}}: m_{\text{可}}$ 是 = 45:45:8:2 封闭体系中微波加热,控制反应温度在 90 °C. 取水杨酸 13.8 g,异丙醇 12.0 g

(n_{NM} n_{HR} n_{HR}

1.3 常规加热合成水杨酸异丙酯

反应物配比用量等条件均同上,但用常规方法加热.

1.4 结果检测及后处理

每隔指定的时间取样测¹H NMR(CCl₄ 为溶剂, TMS 为内标)根据 NMR 氢谱积分面积计算水杨酸的转化率。

对于产品 ,用乙醚溶解反应后的产物 ,用稀的 $NaHCO_3$ 洗至无气泡生成 ,然后用去离子水充分洗涤 多次 取有机相 ,用无水 $MgSO_4$ 干燥过夜 ,过滤后除去 $MgSO_4$,抽干溶剂乙醚 ,得淡黄色液体 . 1H NMR (CDCl₃ , 300 MHz) δ : 1. 25 (d , J = 6.0 Hz , 6H , CH₃) , 5. 25 ~ 5.37 (m , 1H , CH(CH₃)) , 6. 92 (t , J = 6.0 Hz , 1H , 3'-H) , 7.01 (d , J = 6.0 Hz , 1H , 5'-H) , 7.47 (t , J = 6.0 Hz , 1H , 4'-H) , 7.90 (d , J = 6.0 Hz , 1H , 6'-H).

用气相色谱分析含量(柱条件为程序升温 $150\sim250~$ C,保留时间为5~min,升温速度10~C/min 检测器温度250~C),用气相色谱-质谱联用分析仪分析杂质结构。

2 结果与讨论

2.1 微波反应与常规反应的对比 微波反应与常规反应结果如表 1、表 2 所示.

表 1 微波反应($n_{\text{NMog}}: n_{\text{HPop}} = 1:2$)

Table 1 Microwave irradiation ($n_{\text{salicylic acid}}$: $n_{\text{isopropanol}} = 1:2$)

反应时间/min	水杨酸转化率/%	$\omega_{ m App}/\%$
60	14.81	1.46
90	16.31	2.66
120	33.04	7.18
150	44.46	8.29
180	45.14	8.31

表 2 常规反应($n_{\text{KM}}: n_{\text{FR}} = 1:2$)

Table 2 Normal heating ($n_{\text{salicylic acid}}$: $n_{\text{isopropanol}} = 1:2$)

反应时间/min	水杨酸转化率/%	$\omega_{杂质}/\%$
60	1.85	1.82
120	3.04	1.84
180	13.07	3.00

可以看出,在相同温度相同条件下,微波反应速度要比常规反应速度快,并且达到相同的转化率,微波反应的杂质含量要低得多.这是因为微波是一种高频电磁波,可以通过传递到反应物内部的热效应和催化效应加速反应.常规反应速度慢,并且杂质含量高.由于该反应位阻巨大,在不除水的情况下,反应在很低的转化率情况下(约45%)达到了平衡.

2.2 反应物配比的影响

为了使平衡向生成酯的方向移动,增大醇的配比进行反应.微波反应与常规反应结果如表 3、表 4 所示.

表 3 微波反应(n_{KM}): n_{FR} = 1:5)

Table 3 Microwave irradiation ($n_{\text{salicylic acid}}$: $n_{\text{isopropanol}} = 1:5$)

反应时间/min	水杨酸转化率/%	ω 杂质 $/\%$
30	38.8	1.01
60	49.49	1.25
90	47.72	2.79
120	48.86	3.87

表 4 常规反应($n_{\text{NMo}}: n_{\text{FR}} = 1:5$)

Table 4 Normal heating ($n_{\text{salicylic acid}}$: $n_{\text{isopropanol}} = 1:5$)

反应时间/min	水杨酸转化率/%	$\omega_{杂质}/\%$
60	2.03	1.03
120	3.94	1.25
180	12.56	4.28

增大醇的配比,常规反应的反应速度提升不明显,而微波反应速度提升很多,1 h 左右反应已经达到平衡,而且平衡时杂质含量有所降低.

2.3 催化剂对该反应的影响

常规方法采用混酸作为催化剂 结果如表 5 所示.

表 5 以混酸为催化剂的常规反应($n_{\text{NKob}}: n_{\text{FRop}} = 1:2$)

Table 5 Normal heating with mixed acid as catalyst ($n_{\rm salicylic\ acid}$: $n_{\rm isopropanol}=1:2$)

	反应时间/min	水杨酸转化率/%	$\omega_{ m App}/\%$
	0.5	11.0	_
	1	18.1	_
	1.5	29.7	2.07
	2	46.1	4.85
	3	62.7	6.06
_	4	72.8	10.2

用混酸作为催化剂,改用微波反应结果如表 6 所示.

Table 6 Microwave irradiation with mixed acid as catalyst (n_{salicylic acid}: n_{isopropanol} = 1:2)

反应时间/min	水杨酸转化率/%	$\omega_{ m Ag}/\%$
10	33.4	6.1
20	43.4	5.4
30	48.0	8.3
60	47.2	5.1
90^a	57.4	6.9
120 ^a	58.3	10.3

⁴ 补加 6 g 异丙醇后反应结果.

改用混酸后 相同条件下反应速度有所提升 ,但 是杂质含量迅速增大 .

2.4 利用溶剂带水

为了使平衡向生成酯的方向移动,必须增大反应物质的浓度或者排除生成的水,利用微波或常规方法加热,使用苯或者甲苯作为溶剂,通过分水器分出生成的水份,结果如表7和表8所示.

表 7 微波加热(n_{NKM} : $n_{\text{FRR}} = 1:2$)

Table 7 Microwave irradiation ($n_{\text{salicylic acid}}: n_{\text{isopropanol}} = 1:2$)

反应时间/-	溶剂为苯		溶剂为甲苯	
min	水杨酸转 化率/%	ω _{杂质} / %	水杨酸转 化率/%	ω _{杂质} / %
5	5.6	——————————————————————————————————————	4.2	
10	48.0	3.4	45.7	6.9
20	52.1	5.3	52.1	7.9

表 8 常规加热(n_{NKM}): n_{HR} = 1:2)

Table 8 Normal heating ($n_{\text{salicylic acid}}$: $n_{\text{isopropanol}} = 1:2$)

反应时间/-	溶剂为苯		溶剂为甲苯	
min	反应温度/	水杨酸	反应温度/	水杨酸
	${\mathcal C}$	转化率/%	${}^{\circ}$	转化率/%
30	78	0.15	90	2.01
60	78	0.21	90	4.12
120	78	0.38	90	11.1

可见通过排出生成的水分,微波反应速度进一步得到提升,杂质含量基本保持不变,用苯做溶剂时,杂质含量比用甲苯做溶剂要小,但是常规反应下,用苯做溶剂时,在不加压的情况下,反应温度保持在苯 – 异丙醇恒沸点(约78°)处,水杨酸转化率由于温度不高而保持在很低的水平;用甲苯做溶剂时,即使采用了分水措施,反应活性仍不高,虽然反应速度得到提升,但是与微波反应相比。相差巨大,

微波是一种高频电磁波 ,极性分子可以吸收微

波能量而转化为热能.水杨酸和异丙醇能强烈吸收微波,而苯和甲苯对微波的吸收很微弱.因此微波可以直接作用于水杨酸和异丙醇,促进其反应,能量作用集中并且利用率高.

反应的后处理较为简单.将反应物静置分层,滤出未反应的水杨酸,有机相逐步升温蒸馏可以得到未反应的异丙醇、溶剂苯或甲苯以及产品水杨酸异丙酯.后处理过程中不需要添加酸碱,无三废排放.

2.5 杂质结果分析

利用水杨酸和异丙醇合成水杨酸异丙酯,主要的副反应是异丙醇脱水生成丙稀或者异丙醚.微波合成反应中,用气球封住冷凝器的顶部,在密闭体系下反应,反应结束冷却后气球能够恢复原状,并且反应失重在1%~2%,在误差范围内,因此可以认为微波反应中异丙醇脱水生成丙稀的量很少.

经 GC-MS 分析 "产品水杨酸异丙酯中的杂质结构如下 相关数据如表 9 所示.

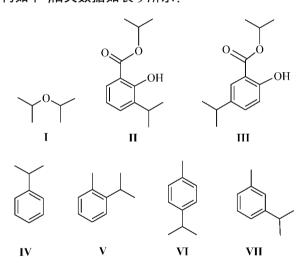


表 9 杂质的 GC-MS 分析结果

Table 9 GC-MS analysis results of impurity

140	GC-MS analysis results of impurity
杂质结构	GC-MS m/z
I	102 , 87 , 69 , 59 , 45 , 41
II	222 , 180 , 165 , 162 , 147 , 119 , 105 , 91 , 77 , 65 , 44
ш	222 , 180 , 165 , 162 , 147 , 134 , 115 , 106 , 91 ,77 ,65 ,41
IV	120 , 105 , 91 , 77 , 65 , 51 , 39
V	134 , 119 , 103 , 91 , 77 , 58 , 44
VI	134 , 119 , 103 , 91 , 77 , 58 , 39
VII	134 , 119 , 103 , 91 , 77 , 58 , 41

其中 I, II 和 III 在各种反应条件下均存

在 IV 是使用苯作为溶剂 ,V~VII 是使用甲苯作为溶剂.分析结果表明 ,I 为异丙醇成醚的结果.另外在酸的作用下 ,异丙醇还可以形成阳离子中间体(Scheme 1),该中间体可以进攻富电子的苯环 ,形成 II~VII 一系列的副产物.

$$H_3C$$
 $\stackrel{H}{\longrightarrow}$ CH_3 CH_3

Scheme 1

3 结论

利用微波反应合成水杨酸异丙酯 ,使用浓硫酸作为催化剂 ,在相同条件下微波反应速度要比常规反应速度快 ,并且达到相同的转化率 ,微波反应的杂质含量要低得多 .增大醇的配比可以提升反应速度 ,使平衡向右移动 .改用混酸作为催化剂 ,微波反应速度比常规反应快 10 倍左右 ,比使用浓硫酸作为催化剂的反应催化效率高 ,但是杂质含量较高 .使用苯或者甲苯作为溶剂并利用其分水 ,微波反应在20 min

内可以达到较高的收率 ,而相同条件下常规反应收率不能令人满意。

综上所述,利用微波合成水杨酸异丙酯具有反应速度快、转化率高、杂质含量小、后处理简单、无三度排放等优点。

致谢 感谢清华紫光英力化工技术有限公司的资金与技术支持。

References

- Hu, L.-M.; Liu, Z.-J. Hubei Chem. Ind. 1996, S1, 26 (in Chinese).
 (胡利民,刘钊杰,湖北化工,1996, S1, 26).
- 2 Liao , S. J. ; Mei , C. Y. ; Zhang , B. A. ; Lin , X. X. CN 1202480 , 1998 [Chem. Abstr. 2002 , 132 , 236880g].
- 3 Giguere , R. J. ; Bray , T. L. ; Duncan , S. M. ; Majetich , G. Tetrahedron Lett. 1986 , 27 , 4945.
- 4 Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Leberge, L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279.
- 5 Gutierrez , F. ; Lounpy , A. ; Bram , G. ; Ruizky , F. Tetrahedron Lett. 1989 , 30 , 945.
- 6 Huang , Z. ; Zu , L. Org. Prep. Proced. Int. 1996 , 28 , 121.
- 7 Deng, R.; Wang, Y.; Jiang, Y. Synth. Commun. 1994, 24(1), 1113.

(Y0202044 LU, Y. J.; HUANG, W. Q.)