Acta Chimica Sinica ›› 2012, Vol. 70 ›› Issue (03): 217-222.DOI: 10.6023/A1108313     Next Articles

Full Papers


詹冬玲a, 王嵩b, 韩葳葳c, 刘景圣a   

  1. a 吉林农业大学食品科学与工程学院 长春 130118;
    b 吉林大学理论化学研究所理论化学计算国家重点实验室 长春 130061;
    c 吉林大学分子酶学工程教育部重点实验室 长春130023
  • 投稿日期:2011-08-31 修回日期:2011-11-10 发布日期:2011-11-23
  • 通讯作者: 刘景圣
  • 基金资助:

    国家自然科学基金(No. 31070638)、吉林省自然科学基金(Nos. 20101552, 201015109)和教育部博士点专项基金(No. 20090061120101)资助项目.

Study of Homology Modeling and High-throughout Screening of a New Inhibitor of Panax β-AS

Zhan Donglinga, Wang Songb, Han Weiweic, Liu Jingshenga   

  1. a College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118;
    b State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130061;
    c Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023
  • Received:2011-08-31 Revised:2011-11-10 Published:2011-11-23
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 31070638), Natural Science Foundation of Jilin province (Nos. 20101552, 201015109) and Doctoral Fund of Ministry of Education (No. 20090061120101).

β-Amyrin synthase from P ginseng (β-AS) catalyzes the biosynthesis of the cyclization of oxidosqualene into Oleanane-type saponins, thereby reducing the amount of steroid formation. However, the 3D structure of β-AS has not been firmly established. To finding the novel inhibitors, a 3D structure model of β-AS protein was constructed based on the structure of the template human oxidosqualene cyclase. After virtual screening technique of β-AS, a novel natural compound (8442257) has been found with the lowest affinity energy. Then we identify that Leu287 is the most important anchoring residues for binding with 8442257 because it has strong vdW interaction with inhibitor. Ser413 and Trp613 are important residues because they make hydrogen bonds with inhibitor. Our results may be helpful for further experimental investigations.

Key words: homology modeling, β-amyrin synthase, virtual screening, molecular docking