Acta Chimica Sinica ›› 2011, Vol. 69 ›› Issue (08): 881-888. Previous Articles     Next Articles

Full Papers

Co-W合金镀层表面氧化膜在碱性体系中的电化学研究

杜海龙1,张勇2,盛敏奇1,刘卫东1,钟庆东*,1,王毅1,周琼宇1   

  1. (1上海大学 上海市现代冶金与材料制备重点实验室 上海 200072)
    (2四川省达州电业局 达州 635000)5. 上海市现代冶金与材料制备重点实验室  
  • 投稿日期:2010-09-08 修回日期:2010-12-07 发布日期:2010-12-13
  • 通讯作者: 钟庆东 E-mail:qdzhong@shu.edu.cn
  • 基金资助:

    国家自然科学基金项目;教育部新世纪优秀人才支持计划;教育部创新团队计划

Study on Electrochemistry of Oxide Films Formed on the Surface of Cobalt-tungsten Alloy Coatings in Alkali Solution

Du Hailong1 Zhang Yong2 Sheng Minqi1 Liu Weidong1 Zhong Qingdong*,1 Wang Yi1 Zhou Qiongyu1   

  1. (1 Key Laboratory of Modern Metallurgy and Material Processing, Shanghai University, Shanghai 200072)
    (2 Dazhou Electric Power Bureau of Sichuan, Dazhou 635000)
  • Received:2010-09-08 Revised:2010-12-07 Published:2010-12-13

Electrochemical methods and Mott-Schottky analysis in conjunction with the point defect model (PDM) for oxide films have been used to investigate the semiconductor properties of the oxide films formed on the surface of cobalt-tungsten alloy coatings in 1 mol•L-1 NaOH electrolyte. The donor density (ND), the flatband potential (Ufb) and the oxygen vacancy diffusion coefficient (D0) of the oxide films on the coatings with different tungsten contents under three different anodization potentials were calculated from the Mott-Schottky plots, respectively. The results indicated that the Mott-Schottky plots of the oxide films were linear with a positive slop, and showed behaviour of the N-type semiconductor. The donor density (ND) of the oxide films increased with the rising of anodization potential or with the decrease of the tungsten content in the alloy coatings, therefore, the chances of oxide films breakdown and pitting initiation increased. The flatband potential of the oxide films dropped with the decrease of anodization potential or with the decrease of the tungsten content in the alloy coatings. Therefore, the corrosion resistance of the anodic oxidation films enhanced. The oxygen vacancy diffusion coefficient (D0) of the anodic oxidation films which formed on the surface of cobalt-tungsten alloy coatings with different tungsten contents at three different anodization potentials were (1.543~8.533)×10-14 cm2•s-1.

Key words: Co-W alloy, oxide films, Mott-Schottky analysis, point defect model, oxygen vacancy diffusion coefficient