Acta Chimica Sinica ›› 2014, Vol. 72 ›› Issue (12): 1245-1250.DOI: 10.6023/A14110783 Previous Articles    

Article

异质结界面修饰对TiO2/P3HT杂化太阳电池光电性能的增强作用

裴娟a, 郝彦忠a, 吕海军b, 孙宝a, 李英品a, 王尚鑫a   

  1. a. 河北科技大学理学院 石家庄 050018;
    b. 河北科技大学化学与制药工程学院 石家庄 050018
  • 投稿日期:2014-11-14 发布日期:2014-11-18
  • 通讯作者: 郝彦忠 E-mail:yzhao@hebust.edu.cn
  • 基金资助:

    项目受国家自然科学基金(No.21173065),河北省自然科学基金(Nos.B2014208062,B2014208066,B2014208121),河北省科技计划项目(No.13214413),河北科技大学博士启动基金(Nos.QD201050,010087)资助.

Improving the Photovoltaic Performance of TiO2/P3HT Hybrid Solar Cell by Interfacial Modification

Pei Juana, Hao Yanzhonga, Lv Haijunb, Sun Baoa, Li Yingpina, Wang Shangxina   

  1. a. College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018;
    b. School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018
  • Received:2014-11-14 Published:2014-11-18
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21173065), Natural Science Foundation of Hebei Province of China (Nos. B2014208062, B2014208066, B2014208121), Science and Technology Project of Hebei Province, China (No. 13214413). the Doctoral Starting up Foundation (Nos. QD201050, 010087) of Hebei University of Science and Technology, China.

In this paper, highly ordered and vertically oriented one-dimensional TiO2 nanorod arrays were prepared firstly on F-SnO2 (FTO) conductive glass by hydrothermal method, then an amphiphilic organic triphenylamine-type dye 2-(5-(4- (diphenylamino)benzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid (M for short) was adsorbed on its surface. After spin-coating organic polymer poly(3-hexylthiophene) (P3HT for short), we fabricated the modified hybrid solar cell device with the structure of FTO/TiO2/M/P3HT/PEDOT:PSS/Au. The transient photocurrent of the electrodes reflects the pn heterojunction is existent indeed in the hybrid electrode. The contact angle changes from 13.9° for pure TiO2 to 112.6° for M-modified sample. This hydrophobic surface facilitates TiO2 further contacting with polymer P3HT. The steady state photoluminescence (PL) emission spectra shows stronger quenching of PL intensity, and PL lifetime fitted from the PL decay curves decreased for the M-modified hybrid film. These conclusions implie the effective charge transfer between P3HT and TiO2, which could suppress the charge recombination. Electrochemical impedance analysis showed that the electron recombination resistance and electron lifetime were increased after interfacial modification. The photovoltaic performance of the modified hybrid cell along with the unmodified one was tested. The open-circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF) are increased for the modified device, and resulting the power conversion efficiency (η) of 1.61%. In addition, the mechanism of the cell and the charge transfer process were investigated preliminarily. The interfacial modifier might be functioned as a "bridge" to transfer electrons to inorganic semiconductor, and transfer holes to polymer also. The modifier could possibly mediate charge transfer in one direction from P3HT to TiO2 for electron accepting and result in more efficient charge separation due to the cascaded energy levels. This work may provide a useful method for increasing the performance of hybrid solar cells by interface modification.

Key words: hybrid solar cell, heterojunction interface modification, exciton dissociation efficiency, charge recombination, photovoltaic performance