Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (3): 231-238.DOI: 10.6023/A22120509 Previous Articles Next Articles
Article
姜兰a, 范义秋, 张晓昕a, 裴燕b, 闫世润a, 乔明华a,*(), 范康年a, 宗保宁a,*()
投稿日期:
2022-12-26
发布日期:
2023-02-17
基金资助:
Lan Jianga, Yiqiu Fan, Xiaoxin Zhanga, Yan Peib, Shirun Yana, Minghua Qiaoa(), Kangnian Fana, Baoning Zonga()
Received:
2022-12-26
Published:
2023-02-17
Contact:
E-mail: Supported by:
Share
Lan Jiang, Yiqiu Fan, Xiaoxin Zhang, Yan Pei, Shirun Yan, Minghua Qiao, Kangnian Fan, Baoning Zong. Effect of W Content on Structure and Catalytic Performance of Pt/GaWZrOx Catalysts in Glycerol Selective Hydrogenolysis[J]. Acta Chimica Sinica, 2023, 81(3): 231-238.
Catalyst | w(Pt)a/% | w(W)a/% | SBETb/ (m2•g-1) | Vporec/ (cm3•g-1) | dpored/nm | DPte/% | SPtf/ (m2•gPt-1) | dPtg/nm |
---|---|---|---|---|---|---|---|---|
Pt/GaWZ(0) | 2.87 | 0 | 124 | 0.39 | 12.6 | 33 | 82 | 1.4 |
Pt/GaWZ(5) | 2.89 | 4.9 | 138 | 0.37 | 10.8 | 54 | 133 | 0.9 |
Pt/GaWZ(7.5) | 2.91 | 7.5 | 139 | 0.37 | 10.7 | 68 | 168 | 0.7 |
Pt/GaWZ(10) | 2.90 | 10.0 | 145 | 0.38 | 9.8 | 86 | 212 | 0.5 |
Pt/GaWZ(15) | 2.94 | 14.9 | 142 | 0.37 | 10.6 | 60 | 148 | 0.8 |
Catalyst | w(Pt)a/% | w(W)a/% | SBETb/ (m2•g-1) | Vporec/ (cm3•g-1) | dpored/nm | DPte/% | SPtf/ (m2•gPt-1) | dPtg/nm |
---|---|---|---|---|---|---|---|---|
Pt/GaWZ(0) | 2.87 | 0 | 124 | 0.39 | 12.6 | 33 | 82 | 1.4 |
Pt/GaWZ(5) | 2.89 | 4.9 | 138 | 0.37 | 10.8 | 54 | 133 | 0.9 |
Pt/GaWZ(7.5) | 2.91 | 7.5 | 139 | 0.37 | 10.7 | 68 | 168 | 0.7 |
Pt/GaWZ(10) | 2.90 | 10.0 | 145 | 0.38 | 9.8 | 86 | 212 | 0.5 |
Pt/GaWZ(15) | 2.94 | 14.9 | 142 | 0.37 | 10.6 | 60 | 148 | 0.8 |
Catalyst | Pt 4f7/2 BE/eV | Pt2+/(Pt0+Pt2+) a | (Pt/Zr)a/% | W 4f7/2 BE/eV | W5+/(W5++W6+) a | (W/Zr)a/% | ||
---|---|---|---|---|---|---|---|---|
Pt0 | Pt2+ | W5+ | W6+ | |||||
Pt/GaWZ(0) | 71.3 | 72.8 | 0.03 | 6.71 | — | — | — | 0 |
Pt/GaWZ(5) | 71.1 | 72.9 | 0.05 | 7.11 | 35.1 | 35.7 | 0.06 | 14.5 |
Pt/GaWZ(7.5) | 71.3 | 72.9 | 0.09 | 7.58 | 35.0 | 35.7 | 0.09 | 21.2 |
Pt/GaWZ(10) | 71.2 | 72.8 | 0.12 | 8.31 | 35.1 | 35.7 | 0.12 | 24.2 |
Pt/GaWZ(15) | 71.2 | 72.9 | 0.07 | 5.54 | 35.1 | 35.7 | 0.15 | 31.0 |
Catalyst | Pt 4f7/2 BE/eV | Pt2+/(Pt0+Pt2+) a | (Pt/Zr)a/% | W 4f7/2 BE/eV | W5+/(W5++W6+) a | (W/Zr)a/% | ||
---|---|---|---|---|---|---|---|---|
Pt0 | Pt2+ | W5+ | W6+ | |||||
Pt/GaWZ(0) | 71.3 | 72.8 | 0.03 | 6.71 | — | — | — | 0 |
Pt/GaWZ(5) | 71.1 | 72.9 | 0.05 | 7.11 | 35.1 | 35.7 | 0.06 | 14.5 |
Pt/GaWZ(7.5) | 71.3 | 72.9 | 0.09 | 7.58 | 35.0 | 35.7 | 0.09 | 21.2 |
Pt/GaWZ(10) | 71.2 | 72.8 | 0.12 | 8.31 | 35.1 | 35.7 | 0.12 | 24.2 |
Pt/GaWZ(15) | 71.2 | 72.9 | 0.07 | 5.54 | 35.1 | 35.7 | 0.15 | 31.0 |
Catalyst | nL/(mmol•g−1) | nB/(mmol•g−1) | nPy/(mmol•g−1) |
---|---|---|---|
Pt/GaWZ(0) | 0.41 | 0.01 | 0.42 |
Pt/GaWZ(5) | 0.42 | 0.05 | 0.47 |
Pt/GaWZ(7.5) | 0.45 | 0.06 | 0.51 |
Pt/GaWZ(10) | 0.48 | 0.07 | 0.55 |
Pt/GaWZ(15) | 0.50 | 0.08 | 0.58 |
Catalyst | nL/(mmol•g−1) | nB/(mmol•g−1) | nPy/(mmol•g−1) |
---|---|---|---|
Pt/GaWZ(0) | 0.41 | 0.01 | 0.42 |
Pt/GaWZ(5) | 0.42 | 0.05 | 0.47 |
Pt/GaWZ(7.5) | 0.45 | 0.06 | 0.51 |
Pt/GaWZ(10) | 0.48 | 0.07 | 0.55 |
Pt/GaWZ(15) | 0.50 | 0.08 | 0.58 |
Catalyst | Conv.b/% | CTLb/% | Sel. (x(C)/% in liquid products)b | Yield1,3-PDO/% | STY/ (g•gPt-1•h-1) | |||
---|---|---|---|---|---|---|---|---|
1,3-PDO | 1,2-PDO | 1-PO | 2-PO | |||||
Pt/GaWZ(0) | 4.2 | 2.7 | 6.3 | 52.5 | 28.0 | 4.6 | 0.2 | 0.02 |
Pt/GaWZ(5) | 17.5 | 16.2 | 40.2 | 21.4 | 30.7 | 6.2 | 6.5 | 0.60 |
Pt/GaWZ(7.5) | 50.8 | 41.4 | 50.3 | 8.3 | 33.4 | 6.7 | 20.8 | 1.91 |
Pt/GaWZ(10) | 96.5 | 87.5 | 54.3 | 0.4 | 38.8 | 6.4 | 47.5 | 4.37 |
Pt/GaWZ(15) | 71.3 | 66.5 | 60.7 | 2.1 | 29.6 | 6.6 | 40.4 | 3.71 |
Catalyst | Conv.b/% | CTLb/% | Sel. (x(C)/% in liquid products)b | Yield1,3-PDO/% | STY/ (g•gPt-1•h-1) | |||
---|---|---|---|---|---|---|---|---|
1,3-PDO | 1,2-PDO | 1-PO | 2-PO | |||||
Pt/GaWZ(0) | 4.2 | 2.7 | 6.3 | 52.5 | 28.0 | 4.6 | 0.2 | 0.02 |
Pt/GaWZ(5) | 17.5 | 16.2 | 40.2 | 21.4 | 30.7 | 6.2 | 6.5 | 0.60 |
Pt/GaWZ(7.5) | 50.8 | 41.4 | 50.3 | 8.3 | 33.4 | 6.7 | 20.8 | 1.91 |
Pt/GaWZ(10) | 96.5 | 87.5 | 54.3 | 0.4 | 38.8 | 6.4 | 47.5 | 4.37 |
Pt/GaWZ(15) | 71.3 | 66.5 | 60.7 | 2.1 | 29.6 | 6.6 | 40.4 | 3.71 |
Catalyst | Substrate | Conv.b/ % | CTLb/ % | Sel. (x(C)/% in liquid products)b | |||
---|---|---|---|---|---|---|---|
1,3-PDO | 1,2-PDO | 1-PO | 2-PO | ||||
Pt/GaWZ(10) | glycerol | 96.5 | 87.5 | 54.3 | 0.4 | 38.8 | 6.4 |
1,3-PDO | 22.0 | 21.7 | — | n.d. c | 98.5 | 0.9 | |
1,2-PDO | 84.2 | 83.4 | n.d. | — | 93.2 | 6.7 | |
Pt/GaWZ(0) | glycerol | 4.2 | 2.7 | 6.3 | 52.5 | 28.0 | 4.6 |
1,3-PDO | 4.6 | 4.5 | — | n.d. | 93.2 | 3.6 | |
1,2-PDO | 1.9 | 1.6 | n.d. | — | 55.0 | 9.3 |
Catalyst | Substrate | Conv.b/ % | CTLb/ % | Sel. (x(C)/% in liquid products)b | |||
---|---|---|---|---|---|---|---|
1,3-PDO | 1,2-PDO | 1-PO | 2-PO | ||||
Pt/GaWZ(10) | glycerol | 96.5 | 87.5 | 54.3 | 0.4 | 38.8 | 6.4 |
1,3-PDO | 22.0 | 21.7 | — | n.d. c | 98.5 | 0.9 | |
1,2-PDO | 84.2 | 83.4 | n.d. | — | 93.2 | 6.7 | |
Pt/GaWZ(0) | glycerol | 4.2 | 2.7 | 6.3 | 52.5 | 28.0 | 4.6 |
1,3-PDO | 4.6 | 4.5 | — | n.d. | 93.2 | 3.6 | |
1,2-PDO | 1.9 | 1.6 | n.d. | — | 55.0 | 9.3 |
[1] |
Ragauskas A. J.; Williams C. K.; Davison B. H.; Britovsek G.; Cairney J.; Eckert C. A.; Frederick W. J.; Hallett J. P.; Leak D. J.; Liotta C. L.; Mielenz J. R.; Murphy R.; Templer R.; Tschaplinski T. Science 2006, 311, 484.
doi: 10.1126/science.1114736 pmid: 16439654 |
[2] |
Nanda M. R.; Yuan Z. S.; Qin W. S.; Ghaziaskar H. S.; Poirier M. A.; Xu C. C. Fuel 2014, 117, 470.
doi: 10.1016/j.fuel.2013.09.066 |
[3] |
Zhou C. H.; Zhao H.; Tong D. S.; Wu L. M.; Yu W. H. Catal. Rev. 2013, 55, 369.
doi: 10.1080/01614940.2013.816610 |
[4] |
Tan H. W.; Aziz A. R. A.; Aroua M. K. Renew. Sustain. Energy Rev. 2013, 27, 118.
doi: 10.1016/j.rser.2013.06.035 |
[5] |
Zhang G. L.; Ma B. B.; Xu X. L.; Li C.; Wang L. W. Biochem. Eng. J. 2007, 37, 256.
doi: 10.1016/j.bej.2007.05.003 |
[6] |
Yang M.; Wu K. Y.; Sun S. D.; Ren Y. J. Appl. Catal. B 2022, 307, 121207.
doi: 10.1016/j.apcatb.2022.121207 |
[7] |
Cheng S. J.; Zeng Y.; Pei Y.; Fan K. N.; Qiao M. H.; Zong B. N. Acta Chim. Sinica 2019, 77, 1054. (in Chinese)
doi: 10.6023/A19060219 |
(成诗婕, 曾杨, 裴燕, 范康年, 乔明华, 宗保宁, 化学学报, 2019, 77, 1054.)
doi: 10.6023/A19060219 |
|
[8] |
Zeng Y.; Jiang L.; Zhang X. X.; Xie S. H.; Pei Y.; Qiao M. H.; Li Z. H.; Xu H. L.; Fan K. N.; Zong B. N. Acta Chim. Sinica 2022, 80, 903. (in Chinese)
doi: 10.6023/A22020059 |
(曾杨, 姜兰, 张晓昕, 谢颂海, 裴燕, 乔明华, 李振华, 徐华龙, 范康年, 宗保宁, 化学学报, 2022, 80, 903.)
doi: 10.6023/A22020059 |
|
[9] |
Fan Y. Q.; Cheng S. J.; Wang H.; Tian J.; Xie S. H.; Pei Y.; Qiao M. H.; Zong B. N. Appl. Catal. B 2017, 217, 331.
doi: 10.1016/j.apcatb.2017.06.011 |
[10] |
Kocal J. A.; Vora B. V.; Imai T. Appl. Catal. A 2001, 221, 295.
doi: 10.1016/S0926-860X(01)00808-0 |
[11] |
Hino M.; Arata K. J. Chem. Soc. Chem. Commun. 1988, (18), 1259.
|
[12] |
García-Pérez D.; Blanco-Brieva G.; Alvarez-Galvan M. C.; Campos-Martin J. M. Fuel 2022, 319, 123704.
doi: 10.1016/j.fuel.2022.123704 |
[13] |
Zhou W.; Soultanidis N.; Xu H.; Wong M. S.; Neurock M.; Kiely C. J.; Wachs I. E. ACS Catal. 2017, 7, 2181.
doi: 10.1021/acscatal.6b03697 |
[14] |
Hahn C.; Endisch M.; Schott F. J. P.; Kureti S. Appl. Catal. B 2015, 168-169, 429.
doi: 10.1016/j.apcatb.2014.12.033 |
[15] |
Chen X. R.; Chen C. L.; Xu N. P.; Mou C. Y. Catal. Today 2004, 93-95, 129.
doi: 10.1016/j.cattod.2004.06.030 |
[16] |
Tu X. J.; Yue Y. H.; Wang J.; Zhai D. W.; Hua W. M.; Gao Z. Chin. J. Catal. 2009, 30, 378. (in Chinese)
doi: 10.1016/S1872-2067(08)60105-9 |
(涂兴珺, 乐英红, 王捷, 翟德伟, 华伟明, 高滋, 催化学报, 2009, 30, 378.)
|
|
[17] |
Zhou W.; Zhao Y. J.; Wang Y.; Wang S. P.; Ma X. B. ChemCatChem 2016, 8, 3663.
doi: 10.1002/cctc.201600981 |
[18] |
Kurosaka T.; Maruyama H.; Naribayashi I.; Sasaki Y. Catal. Commun. 2008, 9, 1360.
doi: 10.1016/j.catcom.2007.11.034 |
[19] |
Zhu S. H.; Hao S. L.; Zheng H. Y.; Mo T.; Li Y. W. Green Chem. 2012, 14, 2607.
doi: 10.1039/c2gc35564g |
[20] |
Zhu S. H.; Qiu Y. N.; Zhu Y. L.; Hao S. L.; Zheng H. Y.; Li Y. W. Catal. Today 2013, 212, 120.
doi: 10.1016/j.cattod.2012.09.011 |
[21] |
Ciuparu D.; Ensuque A.; Shafeev G.; Bozon-Verduraz F. J. Mater. Sci. Lett. 2000, 19, 931.
doi: 10.1023/A:1006799701474 |
[22] |
Hu J. C.; Wang Y. D.; Chen L. F.; Richards R.; Yang W. M.; Liu Z. C.; Xu W. Microporous Mesoporous Mater. 2006, 93, 158.
doi: 10.1016/j.micromeso.2006.02.019 |
[23] |
Barton D. G.; Shtein M.; Wilson R. D.; Soled S. L.; Iglesia E. J. Phys. Chem. B 1999, 103, 630.
doi: 10.1021/jp983555d |
[24] |
Acharyya S. S.; Ghosh S.; Bal R. Green Chem. 2015, 17, 3490.
doi: 10.1039/C5GC00379B |
[25] |
Dou X. M.; Mohan D.; Pittman C. U.; Yang S. Chem. Eng. J. 2012, 198-199, 236.
doi: 10.1016/j.cej.2012.05.084 |
[26] |
Zhu S. H.; Gao X. Q.; Zhu Y. L.; Cui J. L.; Zheng H. Y.; Li Y. W. Appl. Catal. B 2014, 158-159, 391.
doi: 10.1016/j.apcatb.2014.04.049 |
[27] |
Liu J.; Bian S. G.; Xiao M.; Wang S. J.; Meng Y. Z. Catal. Lett. 2009, 131, 305.
doi: 10.1007/s10562-009-9897-y |
[28] |
Armendáriz H.; Cortes M. A.; Hernández I.; Navarrete J.; Vázquez A. J. Mater. Chem. 2003, 13, 143.
doi: 10.1039/B208335C |
[29] |
Ghosh S.; Acharyya S. S.; Sasaki T.; Bal R. Green Chem. 2015, 17, 1867.
doi: 10.1039/C4GC02123A |
[30] |
Nie Y. Y.; Shang S. N.; Xu X.; Hua W. M.; Yue Y. H.; Gao Z. Appl. Catal. A 2012, 433-434, 69.
doi: 10.1016/j.apcata.2012.04.040 |
[31] |
Zhao B. B.; Yu L.; Lei L.; Qian H.; Dong J. X. ChemCatChem 2021, 13, 3695.
doi: 10.1002/cctc.v13.16 |
[32] |
Zhou G. B.; Liu J. L.; Tan X. H.; Pei Y.; Qiao M. H.; Fan K. N.; Zong B. N. Ind. Eng. Chem. Res. 2012, 51, 12205.
|
[33] |
Soultanidis N.; Zhou W.; Psarras A. C.; Gonzalez A. J.; Iliopoulou E. F.; Kiely C. J.; Wachs I. E.; Wong M. S. J. Am. Chem. Soc. 2010, 132, 13462.
doi: 10.1021/ja105519y pmid: 20815386 |
[34] |
Emeis C. A. J. Catal. 1993, 141, 347.
doi: 10.1006/jcat.1993.1145 |
[35] |
Liang Y. X.; Shi G. J.; Jin K. Catal. Lett. 2020, 150, 2365.
doi: 10.1007/s10562-020-03140-z |
[36] |
Numpilai T.; Cheng C. K.; Seubsai A.; Faungnawakij K.; Limtrakul J.; Witoon T. Environ. Pollut. 2021, 272, 116029.
doi: 10.1016/j.envpol.2020.116029 |
[37] |
Zhao B. B.; Liang Y.; Yan W. J.; Liu L.; Dong J. X. Ind. Eng. Chem. Res. 2021, 60, 12534.
doi: 10.1021/acs.iecr.1c02184 |
[38] |
Zhu S. H.; Gao X. Q.; Zhu Y. L.; Zhu Y. F.; Xiang X. M.; Hu C. X.; Li Y. W. Appl. Catal. B 2013, 140-141, 60.
doi: 10.1016/j.apcatb.2013.03.041 |
[39] |
Gong L. F.; Yuan L.; Ding Y. J.; Lin R. H.; Li J. W.; Dong W. D.; Tao W.; Chen W. M. Appl. Catal. A 2010, 390, 119.
doi: 10.1016/j.apcata.2010.10.002 |
[40] |
Zhu S. H.; Gao X. Q.; Zhu Y. L.; Li Y. W. J. Mol. Catal. A: Chem. 2015, 398, 391.
doi: 10.1016/j.molcata.2014.12.021 |
[41] |
Fan Y. Q.; Cheng S. J.; Wang H.; Tian J.; Xie S. H.; Pei Y.; Qiao M. H.; Zong B. N. Appl. Catal. B 2017, 217, 331.
doi: 10.1016/j.apcatb.2017.06.011 |
[42] |
Urban R. A.; Bakshi B. R. Ind. Eng. Chem. Res. 2009, 48, 8068.
doi: 10.1021/ie801612p |
[1] | Tongyi Zhai, Chang Ge, Pengcheng Qian, Bo Zhou, Longwu Ye. Brønsted Acid-Catalyzed Intramolecular Hydroalkoxylation/Claisen Rearrangement of Ynamides★ [J]. Acta Chimica Sinica, 2023, 81(9): 1101-1107. |
[2] | Yang Zeng, Lan Jiang, Xiaoxin Zhang, Songhai Xie, Yan Pei, Minghua Qiao, Zhen-Hua Li, Hualong Xu, Kangnian Fan, Baoning Zong. W-doped Hierarchically Porous Silica Nanosphere Supported Platinum for Catalytic Glycerol Hydrogenolysis to 1,3-Propanediol [J]. Acta Chimica Sinica, 2022, 80(7): 903-912. |
[3] | Cheng, Shijie, Zeng, Yang, Pei, Yan, Fan, Kangnian, Qiao, Minghua, Zong, Baoning. Synthesis and Catalysis of Pt/W-s-SBA-15 Catalysts with Short Channel for Glycerol Hydrogenolysis to 1,3-Propanediol [J]. Acta Chimica Sinica, 2019, 77(10): 1054-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||