Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (2): 110-115.DOI: 10.6023/A21110519 Previous Articles     Next Articles

Special Issue: 中国科学院青年创新促进会合辑



陈敬煌a,b, 孟天a,b, 武烈a, 石恒冲b,c, 杨帆a, 孙健a,*(), 杨秀荣a,b,*()   

  1. a 中国科学院长春应用化学研究所 电分析化学国家重点实验室 长春 130022
    b 中国科学技术大学 应用化学与工程学院 合肥 230026
    c 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
  • 投稿日期:2021-11-16 发布日期:2022-02-07
  • 通讯作者: 孙健, 杨秀荣
  • 作者简介:
  • 基金资助:
    国家自然科学基金(22034006); 国家自然科学基金(21974132); 国家自然科学基金(21721003); 中国科学院青年创新促进会(2018258); 中国科学院青年创新促进会(2020233); 中国科学院青年创新促进会(2017269)

Study on Synthesis and Antibacterial Properties of AgNPs@ZIF-67 Composite Nanoparticles

Jinghuang Chena,b, Tian Menga,b, Lie Wua, Hengchong Shib,c, Fan Yanga, Jian Suna(), Xiurong Yanga,b()   

  1. a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022
    b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026
    c State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022
  • Received:2021-11-16 Published:2022-02-07
  • Contact: Jian Sun, Xiurong Yang
  • About author:
    Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
  • Supported by:
    National Natural Science Foundation of China(22034006); National Natural Science Foundation of China(21974132); National Natural Science Foundation of China(21721003); Youth Innovation Promotion Association, CAS(2018258); Youth Innovation Promotion Association, CAS(2020233); Youth Innovation Promotion Association, CAS(2017269)

Bacterial infection and resistance have threatened public health and it is necessary to develop a novel and efficient antibacterial agent. Metal-organic frameworks (MOFs) have been widely studied and applied in the antibacterial field. The porous carbon frameworks could provide intrinsic conditions to avoid the agglomeration and avail the stabilization of metal nanoparticles, which may be some synergies. Herein, a novel kind of AgNPs@ZIF-67 composite nanoparticles was prepared by a green, rapid, and cost-effective method, during which zeolitic imidazolate framework-67 (ZIF-67) acted as a template and small silver nanoparticles (AgNPs) could be facilely prepared in situ by the reduction of silver ions with fresh sodium borohydride (NaBH4). Specifically, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the existence of as-prepared AgNPs with average diameters of (7.05±0.09) nm and the introduction of AgNPs did not alter the size and rhombic dodecahedron-type morphology of ZIF-67. Energy-dispersive X-ray spectroscopy (EDS) elemental mapping revealed that AgNPs@ZIF-67 mainly contained uniformly dispersed C, N, O, Co and Ag elements. And the loading ratio of Ag weight content was 0.98% in it. The X-ray diffraction (XRD) pattern of the AgNPs@ZIF-67 sample showed a series of typical and sharp diffraction peaks in the (011), (002), (112), and (222) planes but no obvious peaks attributed to the AgNPs, which exhibited the formation of phase-pure ZIF-67 and well-dispersed of metallic Ag in ZIF-67. Zeta potentials showed a higher potential of ZIF-67 (+25.6 mV) than AgNPs@ZIF-67 (+17.7 mV), indicating the load of negative charged AgNPs and good stability of the as-obtained AgNPs@ZIF-67. Furthermore, Staphylococcus aureus (S. aureus) (ATCC 6538) was used in the antibacterial assay and the bacterial concentration was regarded as 1×108 CFU• mL–1 when the OD600 value of the suspensions was 0.1. The in vitro minimum inhibitory concentration (MIC) of AgNPs@ZIF-67, ZIF-67 were 300, 350 µg•mL–1, respectively. The antibacterial efficiency of AgNPs@ZIF-67, ZIF-67, and AgNPs at 24 h were 99.889%, 57.192%, and 26.433%, respectively. It was illustrated that the decoration of AgNPs could significantly improve the antibacterial ability of ZIF-67 nanomaterials. Moreover, SEM images of S. aureus showed that AgNPs@ZIF-67 did more serious damage to the cell membrane than ZIF-67. This work provided a facile method to fabricate the AgNPs@ZIF-67 composite nanoparticles, which was demonstrated as a promising antibacterial material based on the synergistic effect of AgNPs and ZIF-67.

Key words: zeolitic imidazolate framework, Ag nanoparticles, AgNPs@ZIF-67, uniformly load, antibacterial property