Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (5): 493-502.DOI: 10.6023/A23100474 Previous Articles Next Articles
Article
薛冰a, 关伟鑫a, 王鹏a, 侯少文a, 陈欣辉a, 王奕星a, 苟焕其a, 郭锋浩a, 王梦闯a, 王天姿a, 刘金德a, 郑洲b, 柴寿根b, 陈家锐b, 张建林c, 棘云飞c, 倪珺a,*()
投稿日期:
2023-10-28
发布日期:
2024-04-02
基金资助:
Bing Xuea, Weixin Guana, Peng Wanga, Shaowen Houa, Xinhui Chena, Yixing Wanga, Huanqi Goua, Fenghao Guoa, Mengchuang Wanga, Tianzi Wanga, Jinde Liua, Zhou Zhengb, Shougen Chaib, Jiarui Chenb, Jianlin Zhangc, Yunfei Jic, Jun Nia()
Received:
2023-10-28
Published:
2024-04-02
Contact:
*E-mail: junni@zjut.edu.cn
Supported by:
Share
Bing Xue, Weixin Guan, Peng Wang, Shaowen Hou, Xinhui Chen, Yixing Wang, Huanqi Gou, Fenghao Guo, Mengchuang Wang, Tianzi Wang, Jinde Liu, Zhou Zheng, Shougen Chai, Jiarui Chen, Jianlin Zhang, Yunfei Ji, Jun Ni. Relationship between the Acid-base Properties of Nitrogen-modified ZnO-ZrO2/SBA-15 Catalysts and Their Catalytic Performance in the Synthesis of 1,3-Butadiene from Ethanol[J]. Acta Chimica Sinica, 2024, 82(5): 493-502.
催化剂a | 转化率/% | 选择性/% | 丁二烯收率/% | 产能c/ (gBD·gcat−1·h−1) | |||||
---|---|---|---|---|---|---|---|---|---|
丁二烯 | 乙烯 | 乙醛 | 乙醚 | 丁醇 | 其他b | ||||
Zn-Zr/SBA-15 | 90.9 | 50.0 | 4.72 | 9.73 | 0.79 | 2.90 | 31.9 | 45.5 | 0.32 |
Zn-Zr/SBA-15+M | 99.5 | 65.5 | 8.42 | 5.47 | 0.54 | 1.07 | 18.9 | 65.2 | 0.45 |
Zn-Zr/SBA-15+Ma | 98.5 | 63.7 | 10.4 | 4.84 | 0.63 | 0.96 | 19.5 | 62.7 | 0.44 |
Zn-Zr/SBA-15+Pm | 99.4 | 61.4 | 13.2 | 2.60 | 0.63 | 0.96 | 21.2 | 61.0 | 0.42 |
Zn-Zr/SBA-15+Im | 96.8 | 60.7 | 13.5 | 3.81 | 0.62 | 0.90 | 20.5 | 58.8 | 0.41 |
Zn-Zr/SBA-15+St | 97.1 | 59.8 | 12.5 | 4.55 | 0.63 | 1.00 | 21.5 | 58.1 | 0.40 |
催化剂a | 转化率/% | 选择性/% | 丁二烯收率/% | 产能c/ (gBD·gcat−1·h−1) | |||||
---|---|---|---|---|---|---|---|---|---|
丁二烯 | 乙烯 | 乙醛 | 乙醚 | 丁醇 | 其他b | ||||
Zn-Zr/SBA-15 | 90.9 | 50.0 | 4.72 | 9.73 | 0.79 | 2.90 | 31.9 | 45.5 | 0.32 |
Zn-Zr/SBA-15+M | 99.5 | 65.5 | 8.42 | 5.47 | 0.54 | 1.07 | 18.9 | 65.2 | 0.45 |
Zn-Zr/SBA-15+Ma | 98.5 | 63.7 | 10.4 | 4.84 | 0.63 | 0.96 | 19.5 | 62.7 | 0.44 |
Zn-Zr/SBA-15+Pm | 99.4 | 61.4 | 13.2 | 2.60 | 0.63 | 0.96 | 21.2 | 61.0 | 0.42 |
Zn-Zr/SBA-15+Im | 96.8 | 60.7 | 13.5 | 3.81 | 0.62 | 0.90 | 20.5 | 58.8 | 0.41 |
Zn-Zr/SBA-15+St | 97.1 | 59.8 | 12.5 | 4.55 | 0.63 | 1.00 | 21.5 | 58.1 | 0.40 |
催化剂 | 关键反应步骤活性/% | |||
---|---|---|---|---|
脱氢a | 脱水b | 缩合c | MPVd | |
Zn-Zr/SBA-15 | 94.49 | 5.51 | 54.50 | 50.00 |
Zn-Zr/SBA-15+M | 90.94 | 8.96 | 67.53 | 65.50 |
Zn-Zr/SBA-15+Ma | 88.97 | 11.03 | 65.38 | 63.70 |
Zn-Zr/SBA-15+Pm | 86.17 | 13.83 | 62.96 | 61.40 |
Zn-Zr/SBA-15+Im | 85.88 | 14.12 | 62.30 | 60.70 |
Zn-Zr/SBA-15+St | 86.87 | 13.13 | 61.51 | 59.80 |
催化剂 | 关键反应步骤活性/% | |||
---|---|---|---|---|
脱氢a | 脱水b | 缩合c | MPVd | |
Zn-Zr/SBA-15 | 94.49 | 5.51 | 54.50 | 50.00 |
Zn-Zr/SBA-15+M | 90.94 | 8.96 | 67.53 | 65.50 |
Zn-Zr/SBA-15+Ma | 88.97 | 11.03 | 65.38 | 63.70 |
Zn-Zr/SBA-15+Pm | 86.17 | 13.83 | 62.96 | 61.40 |
Zn-Zr/SBA-15+Im | 85.88 | 14.12 | 62.30 | 60.70 |
Zn-Zr/SBA-15+St | 86.87 | 13.13 | 61.51 | 59.80 |
催化剂 | 比表面积a/ (m2·g−1) | 孔容b/ (cm3·g−1) | 平均孔径c/ nm |
---|---|---|---|
Zn-Zr/SBA-15 | 385.1 | 0.94 | 0.95 |
Zn-Zr/SBA-15+M | 346.6 | 1.02 | 1.17 |
Zn-Zr/SBA-15+Ma | 360.7 | 1.02 | 1.04 |
Zn-Zr/SBA-15+Pm | 354.4 | 0.95 | 1.05 |
Zn-Zr/SBA-15+Im | 361.4 | 1.00 | 1.07 |
Zn-Zr/SBA-15+St | 351.1 | 0.96 | 1.07 |
催化剂 | 比表面积a/ (m2·g−1) | 孔容b/ (cm3·g−1) | 平均孔径c/ nm |
---|---|---|---|
Zn-Zr/SBA-15 | 385.1 | 0.94 | 0.95 |
Zn-Zr/SBA-15+M | 346.6 | 1.02 | 1.17 |
Zn-Zr/SBA-15+Ma | 360.7 | 1.02 | 1.04 |
Zn-Zr/SBA-15+Pm | 354.4 | 0.95 | 1.05 |
Zn-Zr/SBA-15+Im | 361.4 | 1.00 | 1.07 |
Zn-Zr/SBA-15+St | 351.1 | 0.96 | 1.07 |
Catalyst | Acid sites concentrationa/ (mmol·g−1), [T c/℃] | Basic sites concentrationb/ (mmol·g−1), [T c/℃] | |||||
---|---|---|---|---|---|---|---|
Weak | Moderate | Total | Weak | Moderate | Strong | Total | |
Zn-Zr/SBA-15 | 0.026 [181] | 0.070 [368] | 0.096 | 0.001 [102] | 0.052 [323] | 0.052 [400] | 0.105 |
Zn-Zr/SBA-15+M | 0.022 [181] | 0.078 [320] | 0.100 | 0.0008 [98] | 0.055 [347] | 0.056 [400] | 0.112 |
Zn-Zr/SBA-15+Ma | 0.030 [184] | 0.091 [348] | 0.121 | 0.0006 [105] | 0.054 [331] | 0.058 [400] | 0.113 |
Zn-Zr/SBA-15+Pm | 0.028 [187] | 0.089 [360] | 0.117 | 0.0009 [103] | 0.058 [375] | 0.063 [400] | 0.122 |
Zn-Zr/SBA-15+Im | 0.027 [179] | 0.115 [345] | 0.142 | 0.0009 [95] | 0.056 [367] | 0.060 [400] | 0.117 |
Zn-Zr/SBA-15+St | 0.029 [191] | 0.086 [368] | 0.115 | 0.0012 [116] | 0.061 [362] | 0.052 [400] | 0.114 |
Catalyst | Acid sites concentrationa/ (mmol·g−1), [T c/℃] | Basic sites concentrationb/ (mmol·g−1), [T c/℃] | |||||
---|---|---|---|---|---|---|---|
Weak | Moderate | Total | Weak | Moderate | Strong | Total | |
Zn-Zr/SBA-15 | 0.026 [181] | 0.070 [368] | 0.096 | 0.001 [102] | 0.052 [323] | 0.052 [400] | 0.105 |
Zn-Zr/SBA-15+M | 0.022 [181] | 0.078 [320] | 0.100 | 0.0008 [98] | 0.055 [347] | 0.056 [400] | 0.112 |
Zn-Zr/SBA-15+Ma | 0.030 [184] | 0.091 [348] | 0.121 | 0.0006 [105] | 0.054 [331] | 0.058 [400] | 0.113 |
Zn-Zr/SBA-15+Pm | 0.028 [187] | 0.089 [360] | 0.117 | 0.0009 [103] | 0.058 [375] | 0.063 [400] | 0.122 |
Zn-Zr/SBA-15+Im | 0.027 [179] | 0.115 [345] | 0.142 | 0.0009 [95] | 0.056 [367] | 0.060 [400] | 0.117 |
Zn-Zr/SBA-15+St | 0.029 [191] | 0.086 [368] | 0.115 | 0.0012 [116] | 0.061 [362] | 0.052 [400] | 0.114 |
[1] |
Corson, B. B.; Stahly, E. E.; Jones, H. E.; Bishop, H. D. Ind. Eng. Chem. 1949, 41, 1012.
|
[2] |
Bruijnincx, P. C. A.; Weckhuysen, B. M. Angew. Chem., Int. Ed. 2013, 52, 11980.
doi: 10.1002/anie.201305058 pmid: 24136811 |
[3] |
(a) Cespi, D.; Passarini, F.; Vassura, I.; Cavani, F. Green Chem. 2016, 18, 1625.
|
(b) Shylesh, S.; Gokhale, A. A.; Scown, C. D.; Kim, D.; Ho, C. R.; Bell, A. T. ChemSusChem 2016, 9, 1462.
|
|
[4] |
Pomalaza, G.; Arango Ponton, P.; Capron, M.; Dumeignil, F. Catal. Sci. Technol. 2020, 10, 4860.
|
[5] |
(a) Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R. S.; Yang, S.; Luque, R. ACS Catal. 2018, 8, 148.
|
(b) Bin Samsudin, I.; Zhang, H.; Jaenicke, S.; Chuah, G.-K. Chem. Asian J. 2020, 15, 4199.
|
|
[6] |
Sushkevich, V. L.; Ivanova, I. I.; Ordomsky, V. V.; Taarning, E. ChemSusChem 2014, 7, 2527.
doi: 10.1002/cssc.201402346 pmid: 25123990 |
[7] |
Makshina, E. V.; Janssens, W.; Sels, B. F.; Jacobs, P. A. Catal. Today 2012, 198, 338.
|
[8] |
Zhou, B.-X.; Ding, S.-S.; Zhang, B.-J.; Xu, L.; Chen, R.-S.; Luo, L.; Huang, W.-Q.; Xie, Z.; Pan, A.; Huang, G.-F. Appl. Catal., B 2019, 254, 321.
|
[9] |
Osuga, R.; Fang, P.; Nishiyama, H.; Takizawa, K.; Yagihashi, N.; Yokoi, T.; Kondo, J. N. Microporous Mesoporous Mater. 2022, 346, 112278.
|
[10] |
Tu, P.-X.; Xue, B.; Tong, Y.-Q.; Zhou, J.; He, Y.-H.; Cheng, Y.-H.; Ni, J.; Li, X.-N. ChemistrySelect 2020, 5, 7258.
|
[11] |
Damyanova, S.; Grange, P.; Delmon, B. J. Catal. 1997, 168, 421.
|
[12] |
(a) Larina, O. V.; Kyriienko, P. I.; Balakin, D. Y.; Vorokhta, M.; Khalakhan, I.; Nychiporuk, Y. M.; Matolín, V.; Soloviev, S. O.; Orlyk, S. M. Catal. Sci. Technol. 2019, 9, 3964.
doi: 10.1039/c9cy00991d |
(b) Connell, G.; Dumesic, J. A. J. Catal. 1987, 105, 285.
|
|
(c) Larina, O. V.; Kyriienko, P. I.; Soloviev, S. O. Catal. Lett. 2015, 145, 1162.
|
|
[13] |
Ordomsky, V. V.; Sushkevich, V. L.; Ivanova, I. I. J. Mol. Catal. A: Chem. 2010, 333, 85.
|
[14] |
(a) Jiang, D.-H.; Fang, G.-Q.; Tong, Y.-Q.; Wu, X.-Y.; Wang, Y.-F.; Hong, D.-S.; Leng, W.-H.; Liang, Z.; Tu, P.-X.; Liu, L.; Xu, K.-Y.; Ni, J.; Li, X.-N. ACS Catal. 2018, 8, 11973.
|
(b) Wu, X.-Y.; Fang, G.-Q.; Liang, Z.; Leng, W.-H.; Xu, K.-Y.; Jiang, D.-H.; Ni, J.; Li, X.-N. Catal. Commun. 2017, 100, 15.
|
|
[15] |
(a) Urbano, F. J.; Aramendía, M. A.; Marinas, A.; Marinas, J. M.. J. Catal. 2009, 268, 79.
|
(b) Liang, Z.; Jiang, D.-H.; Fang, G.-Q.; Leng, W.-H.; Tu, P.-X.; Tong, Y.-Q.; Liu, L.; Ni, J.; Li, X.-N. ChemistrySelect 2019, 4, 4364.
doi: 10.1002/slct.201900712 |
[1] | Lulu Zhang, Yuanyuan Wang, Guinan Zhu, Wenbo Dai, Zixuan Zhao, Ying Zhao, Junge Zhi, Yuping Dong. Aggregation-Induced Emission and Mechanochromism of the Tetraphenylbutadiene Derivatives Containing Different Alkyl Chains [J]. Acta Chimica Sinica, 2022, 80(3): 282-290. |
[2] | Tong Jiao, Xue-lian Xu, Lei Zhang, You-yun Weng, Yu-bing Weng, Zhi-xian Gao. Research on CuO/CeO2-ZrO2/SiC Monolithic Catalysts for Hydrogen Production by Methanol Steam Reforming [J]. Acta Chimica Sinica, 2021, 79(4): 513-519. |
[3] | Lei Yang, Yujing Wu, Xuanjun Wu, Weiquan Cai. High-throughput Screening of Real Metal-organic Frameworks for Adsorption Separation of C4 Olefins [J]. Acta Chimica Sinica, 2021, 79(4): 520-529. |
[4] | Guopeng Xiao, Weijun Qiao, Lei Zhang, Shaojun Qing, Caishun Zhang, Zhixian Gao. Study on Hydrogen Production Catalytic Materials for Perovskite Methanol Steam Reforming [J]. Acta Chimica Sinica, 2021, 79(1): 100-107. |
[5] | Wu Yan, Pang Aimin, Hu Lei, He Gensheng, Zhang Yingying, Zhang Lixiong, Li Minghai, Ma Zhenye. Preparation of α-Fe2O3/(IPDI-HTPB) Composite Nanoparticles and Their Catalytic Performance [J]. Acta Chimica Sinica, 2020, 78(4): 337-343. |
[6] | Wang Yongsheng, Zhao Yunlu, Zhao Zhenzhen, Lan Xiaolin, Xu Jinxia Xu Weixiang, Duan Zhengkang. Study on Preparation of Cu-ZrO2 Catalyst Coated by Nitrogen-Doped Carbon and Catalytic Dehydrogenation Performance [J]. Acta Chim. Sinica, 2019, 77(7): 661-668. |
[7] | Fu Wenwen, Li Yan, Liang Changhai. Dehydrogenation Mechanism of Ethanol on Co(111) Surface: A First-principles Study [J]. Acta Chim. Sinica, 2019, 77(6): 559-568. |
[8] | Liu Jiao, Sun Hailong, Yin Lu, Yuan Yaxian, Xu Minmin, Yao Jianlin. On-line Monitoring on the Micro-synthesis of α-Phenylethanol by Microfluidic Chip Combined with Surface Enhanced Raman Spectroscopy [J]. Acta Chim. Sinica, 2019, 77(3): 257-262. |
[9] | Liu Yucan, Su Miaomiao, Zhang Yan, Duan Jinming, Li Wei. Influence Rule of Organic Solvents Methanol from Sample Preparation on Degradation Rate and Mechanism of Atrazine in UV-based Oxidation Processes [J]. Acta Chim. Sinica, 2019, 77(1): 72-83. |
[10] | Jia Zhenlong, Tu Yunbao, Wang Jianqiang, Frenkel Anatoly I., Yang Weimin, Liu Zhongneng, Xu Zhongqianga. In situ X-ray Absorption Spectroscopy Characterization of Copper Valence State in Cu-Zn/SiO2 Catalyst [J]. Acta Chim. Sinica, 2018, 76(8): 639-643. |
[11] | Wu Kuangheng, Zhou Yawei, Ma Xianyin, Ding Chen, Cai Wenbin. Controlled Synthesis of Gold-Platinum Catalysts for Ethanol Electro-oxidation Reaction [J]. Acta Chim. Sinica, 2018, 76(4): 292-297. |
[12] | Zhu Chan, Hai Yang, Zhao Zhigang, Yang Yaoyue. Preliminary Study of Ni and P Low-doped Pd-based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media [J]. Acta Chim. Sinica, 2018, 76(1): 30-34. |
[13] | Cai Yuejin, Liu Chenxia, Zhuo Ou, Wu Qiang, Yang Lijun, Chen Qiang, Wang Xizhang, Hu Zheng. Ruthenium Nanoparticles Supported on Hierarchical Nitrogen-Doped Carbon Nanocages for Selective Hydrogenation of Acetophenone in Mild Conditions [J]. Acta Chim. Sinica, 2017, 75(7): 686-691. |
[14] | Meng Chao, Wang Hua, Wu Yubin, Fu Xianzhi, Yuan Rusheng. Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process [J]. Acta Chim. Sinica, 2017, 75(5): 508-513. |
[15] | Tao Xiongxin, Li Li, Qi Xueqiang, Wei Zidong. Preparation and Electrochemical Properties of Honeycomb-like Pt-Ni-P/Ti Electrode for Methanol Oxidation [J]. Acta Chim. Sinica, 2017, 75(2): 237-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||