Acta Chimica Sinica Previous Articles     Next Articles

Review

局域表面等离激元共振在单分子灵敏度检测中的应用及进展

罗成璐a, 田梦a, 崔宇凡a, 马兴毅a,b,c,*   

  1. a哈尔滨工业大学(深圳) 医学工程与数字健康学院/理学院 深圳 518055;
    b胞芯国际 济南 250117;
    c百吉林生命科学研究院 烟台 264003
  • 投稿日期:2024-08-21
  • 作者简介:罗成璐,哈尔滨工业大学(深圳)在读硕士,主要研究方向为纳米材料的合成、设计及其在生物医学领域上的应用. 田梦,哈尔滨工业大学(深圳)材料与化工在读博士,主要从事新型纳米材料合成、精密生物传感方向的研究. 崔宇凡,毕业于英国帝国理工学院,目前于哈尔滨工业大学(深圳)攻读博士学位,师从马兴毅教授,从事纳米颗粒和等离子纳米孔的结合研究,以改进单分子生物传感纳米材料的设计和合成. 马兴毅,先后毕业于哈尔滨工业大学、成均馆大学和高丽大学,现任哈尔滨工业大学(深圳)教授,纳米医学与交叉科学课题组PI,在生物医学工程、材料与化工、海洋科学等学科招收博士. 目前研究方向为:(1)生物技术→工程技术:利用生物技术和生物分子设计制备高性能纳米材料,将新材料用于生物芯片、传感系统等工程技术创新;(2)工程技术→医养健康:利用纳米技术和纳米材料开展生物医学研究,将新细胞用于生物发酵,将新分子用于新药研发,将新技术用于健康诊断和治疗.
  • 基金资助:
    国家自然科学基金(Nos. 22371059, 82302346, 82411540243)、深圳市科技计划和医学研究专项(Nos. JCYJ20210324132815037, GXWD20220818171934001, GJHZ20220913143010018, D2401024)、广东省基础与应用基础研究基金(Nos. 2022A1515220158, 2024A1515010898)、广东省教育厅(Nos. 2021KQNCX276, 2022ZDZX2065, 2023KTSCX225)、中央高校基本科研业务费专项基金(No. HIT.OCEF.2022040)、山东省生化分析重点实验室开放课题(No. SKLBA2302)和相关人才计划(Nos. 2021QN02Y120, QJD2002017, TSCY202006001, 2022HWYQ097)资助.

Applications and progress of localized surface plasmon resonance in detections with single-molecule sensitivity

Luo Chenglua, Tian Menga, Cui Yufana, Ma Xingyia,b,c,*   

  1. aSchool of Biomedical Engineering and Digital Health & School of Science, Harbin Institute of Technology, Shenzhen 518055;
    bBiosen International, Jinan 250117;
    cBriteley Institute of Life Sciences, Yantai 264003
  • Received:2024-08-21
  • Contact: * E-mail: maxy@hit.edu.cn
  • Supported by:
    National Natural Science Foundations of China (Nos. 22371059, 82302346, 82411540243), Shenzhen Science and Technology Programs and Medicine Research Program (Nos. JCYJ20210324132815037, GXWD20220818171934001, GJHZ20220913143010018, D2401024), Guangdong Basic and Applied Basic Research Foundations (Nos. 2022A1515220158, 2024A1515010898), Department of Education of Guangdong (Nos. 2021KQNCX276, 2022ZDZX2065, 2023KTSCX225), the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2022040), Shandong Key Laboratory of Biochemical Analysis (No. SKLBA2302) and Talents Programs (Nos. 2021QN02Y120, QJD2002017, TSCY202006001, 2022HWYQ097).

Localized surface plasmon resonance (LSPR) is a unique optical property of noble-metal nanomaterials, such as gold and silver, which can be used to achieve increasingly more applications in human health due to its sensitivity to changes in the refractive index and others of the surrounding environment and has therefore attracted wide attention from researchers. In addition to this, the single molecule is the smallest unit to be studied in the process of life activity, and the study of it presents a challenge to the limit of detection technology. Therefore, the combination of LSPR with the detection strategies of single-molecule recognition can provide a good system for studying the interaction between light and matter at the molecular level, which has extraordinary scientific significance and value for the study of intermolecular affinity, molecular dynamics, and pharmacokinetics, etc. Based on the above background, starting from the LSPR sensing strategies, we first introduce its basic principle and explain the factors affecting the sensing performance, and then discuss the design scheme of highly sensitive optical sensing technology, which can be controlled by the materials, geometric shape and surrounding environment of metal nanoparticles to promote the generation of hot spots, the regulation of their distribution and density, and the enhancement of the electromagnetic field intensity. Moreover, the optical sensing strategies for highly sensitive detection can be through amplifying the weak changes of target molecules by the highly sensitive sensing substrate, so that the changes in the molecular recognition process are ultimately presented in the form of optical response signals. Finally, the advanced applications of different design schemes in detections with single-molecule sensitivity (DSMS) are analyzed comprehensively, and the development trends of this technology are summarized. Hopefully, this paper can provide new ideas for researchers to develop and design LSPR optical biological or chemical sensors, and effectively optimize and expand the applications of LSPR in DSMS.

Key words: localized surface plasmon resonance, gold/silver nanoparticles, detections with single-molecule sensitivity, optical sensing, structural design