Acta Chimica Sinica ›› 2005, Vol. 63 ›› Issue (17): 1554-1560. Previous Articles     Next Articles

Original Articles

CH3S自由基H迁移异构化及脱H2反应的直接动力学研究

王文亮*1,刘艳1,王渭娜1,罗琼1 2,李前树1 2   

  1. (1陕西师范大学化学与材料科学学院 西安 710062)
    (2北京理工大学理学院 北京 100081)
  • 投稿日期:2004-11-24 修回日期:2005-05-08 发布日期:2010-12-10
  • 通讯作者: 王文亮

Direct Dynamics Studies on the Isomerization and H2 Elimination Reaction of CH3S

WANG Wen-Liang*1,LIU Yan1,WANG Wei-Na1,LUO Qiong1,2,LI Qian-Shu1,2   

  1. (1 School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062)
    (2 School of Science, Beijing Institute of Technology, Beijing 100081)
  • Received:2004-11-24 Revised:2005-05-08 Published:2010-12-10
  • Contact: WANG Wen-Liang

The isomerization reaction of CH3S→CH2SH (R1), H2 elimination reaction of CH3S→HCS+H2 (R2) and the isomerization reaction of HCS→CSH (R3) have been studied by using the density functional theory. Geometries, harmonic vibrational frequencies of all stationary points and the minimum energy paths for the title reactions were calculated at the MPW1PW91 level in conjunction with the 6-311G(d,p) basis set. In order to obtain more reliable energies, higher level energy calculations for the stationary points and selected points were carried out at the QCISD(t)/6-311++G(d,p)//MPW1PW91/6-311G(d,p)+ZPE levels. The rate constants of the reactions were evaluated by means of the classical transition state theory, the canonical variational transition state theory, and canonical variational transition state theory incorporating small-curvature tunneling correction in the temperature range of 200~2000 K. The results show that the energy barriers of the reactions R1, R2 and R3 △E are 160.69, 266.61 and 241.63 kJ/mol, respectively, and the reaction R1 is the dominant reaction channel. CH3S radical is more stable than CH2SH in low temperature region, while the latter is more stable in high temperature region. The tunneling effect is significant and the variational effect is small for the calculated rate constants.

Key words: methylthio radical, isomerization reaction, H2 elimination, rate constant