Acta Chimica Sinica ›› 2008, Vol. 66 ›› Issue (8): 867-873. Previous Articles     Next Articles

Original Articles

多壁碳纳米管/TiO2纳米复合薄膜的光电性能研究

张维1,崔晓莉*,1,江志裕2   

  1. (1复旦大学材料科学系 上海 200433)
    (2复旦大学化学系 上海市分子催化与新材料重点实验室 上海 200433)
  • 投稿日期:2007-08-22 修回日期:2007-12-01 发布日期:2008-04-28
  • 通讯作者: 崔晓莉

Photoelectrochemical Properties of Multi-Walled Carbon Nanotube/TiO2 Nanocomposite Films

ZHANG Wei1 CUI Xiao-Li*,1 JIANG Zhi-Yu2   

  1. (1 Department of Material Science, Fudan University, Shanghai 200433)
    (2 Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433)
  • Received:2007-08-22 Revised:2007-12-01 Published:2008-04-28
  • Contact: CUI Xiao-Li

A series of Mutil-Walled Carbon Nanotube (MWCNT) nanocomposite film electrodes with different amounts of MWCNT were prepared by a sol-gel method. The microscopy and the structure of the nanocomposite film were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photoelectrochemical properties of the nanocomposite film electrodes were investigated under white and visible light illumination using KOH as electrolyte. The results showed that the photovoltage and photocurrent of MWCNT/ TiO2 nanocomposite film electrodes could be evidently enhanced compared with a pure TiO2 thin film electrode. The photoelectrochemical response under visible light region was also observed for such nanocomposite film electrodes. The charge transfer rate and the total absorption of simulated solar light were remarkably increased because of the presence of MWCNT thin film, which has a superior electron-conducting property, an absorption property and a tanglesome network, providing an ideal matrix for uniform distribution of TiO2 nanoparticles. It was found that the appropriate amount of MWCNT in the nanocomposite film electrode was 0.04 mg/cm2.

Key words: TiO2, MWCNT, photoelectrochemical property, visible light