Acta Chimica Sinica ›› 2009, Vol. 67 ›› Issue (6): 488-492. Previous Articles     Next Articles

Original Articles

电化学控制产生纳米氧气气泡及其对电化学聚合吡咯形貌的影响

惠 飞a,b 李 宾c 何品刚*,a 胡 钧c 方禹之a

  

  1. (a华东师范大学化学系 上海 200062)
    (b中国科学院核分析重点实验室 上海 201800)
    (c中国科学院上海应用物理研究所 上海 201800)

  • 投稿日期:2008-08-11 修回日期:2008-10-30 发布日期:2009-03-28
  • 通讯作者: 何品刚

Electrochemically Controlled Formation and Growth of Oxygen Nanobubbles and Their Effect on Morphology of Polypyrrole

Hui, Fei a,b Li, Bin c He, Pingang *,a Hu, Jun c Fang, Yuzhi a   

  1. (a Department of Chemistry, East China Normal University, Shanghai 200062)
    (b Key Laboratory of Nuclear Analysis Techniques, Chinese Academy of Sciences, Shanghai 201800)
    (c Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800)
  • Received:2008-08-11 Revised:2008-10-30 Published:2009-03-28
  • Contact: He, Pingang

The electrochemically controlled formation and growth of oxygen nanobubbles were observed on bare highly oriented pyrolytic graphite (HOPG) surface via in-situ electrochemical atomic force microscopy (in-situ EC-AFM). The formation and growth could be well controlled by tuning either the applied voltage or the reaction time. The growth effect of the nanobubbles on pyrrole electropolymerization on the HOPG surface was further studied, demonstrating that the oxygen nanobubbles were responsible for the bubble-shaped nanoscale defects on polypyrrole film.

Key words: electrochemical atomic force microscopy, oxygen nanobubble, highly oriented pyrolytic graphite, polypyrrole