[1] (a) Nicolaou, K. C.; Vourloumis, D.; Wissinger, N.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 44.
(b) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551.
(c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.
(d) Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.
[2] For a recent review, see:(a) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730; For early contributions, see:
(b) Johnson, W. S.; Kinnel, R. B. J. Am. Chem. Soc. 1966, 88, 3861.
(c) Tamelen, E. E. V.; McCormick, J. P. J. Am. Chem. Soc. 1969, 91, 1847.
[3] For selected examples in this field, see:(a) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906.
(b) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2001, 123, 1505.
(c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122.
(d) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2012, 134, 11992.
(e) Zhao, Y.-J.; Li, B.; Tan, L.-J. S.; Shen, Z.-L.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 10242.
(f) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
(g) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.
(h) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030.
(i) Mullen, C. A.; Campbell, A. N.; Gagn, M. R. Angew. Chem. Int. Ed. 2008, 47, 6011.
(j) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276.
(k) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276.
[4] For a recent review, see:(a) Justicia, J.; Álvarez de Cienfuegos, L.; Campaña, A. G.; Miguel, D.; Jakoby, V.; Gansäuer, A.; Cuerva, J. M. Chem. Soc. Rev. 2011, 40, 3525. For selected examples, see:
(b) Rendeler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.
(c) Handa, S.; Pattenden, G. J. Chem. Soc., Perkin Trans. 11999, 843.
(d) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427.
(e) Zoretic, P. A.; Fang, H.; Ribeiro, A. A. J. Org. Chem. 1998, 63, 4779.
(f) Morcillo, S. P.; Miguel, D.; Resa, S.; Martín-Lasanta, A.; Millán, A.; Choquesillo-Lazarte, D.; Gar-cía-Ruiz, J. M.; Mota, A. J.; Justicia, J.; Cuerva, J. M. J. Am. Chem. Soc. 2014, 136, 6943.
(g) Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y.; Yang, D. Angew. Chem. Int. Ed. 2002, 41, 3014.
(h) Heinemann, C.; Demuth, M. J. Am. Chem. Soc. 1999, 121, 4894.
(i) Bunte, J. O.; Rinne, S.; Schäfer, C.; Neumann, B.; Stammlerb, H.-G.; Mattaya, J. Tetrahedron Lett. 2003, 44, 45.
[5] For recent selected reviews on the field of photocatalysis in photochemical synthesis, see:(a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(c) Corrigan, N.; Shanmugam, S.; Xu, J.; Boyer, C. Chem. Soc. Rev. 2016, 45, 6165.
(d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898. For reviews on the field of visible-light photoredox catalysis, see:
(e) Ding, K.; Xiao, W.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 5(in Chinese). (丁奎岭, 肖文精, 吴骊珠, 化学学报, 2017, 75, 5.)
(f) Pei, P. Zhang, F.; Yi, H.; Lei, A. Acta Chim. Sinica 2017, 75, 15(in Chinese). (裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
(g) Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22(in Chinese). (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
(h) Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34(in Chinese). (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
(i) Zhang, J.; Chen, Y. Acta Chim. Sinica 2017, 75, 41(in Chinese). (张晶, 陈以昀, 化学学报, 2017, 75, 41.)
(j) Guan, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese). (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
(k) Sun, X.; Yu, S. Chin. J. Org. Chem. 2016, 36, 239(in Chinese). (孙晓阳, 俞寿云, 有机化学, 2016, 36, 239.)
(l) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
(m) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(n) Xuan, J.; Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Eur. J. Org. Chem. 2013, 6755.
(o) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(p) Zeitler, K. Angew. Chem. Int. Ed. 2009, 48, 9785.
[6] For recently selected reviews on the field of applications of visible light photoredox catalysis in natural product synthesis, see:(a) Nicholls, T. P.; Leonori, D.; Bissember, A. C. Nat. Prod. Rep. 2016, 33, 1248.
(b) Kärkäs, M. D.; Porco, J. A., Jr.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.
(c) Tan, F.; Xiao, W. Acta Chim. Sinica 2015, 73, 85(in Chinese). (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
[7] Yang, Z.; Li, H.; Zhang, L.; Zhang, M.-T.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2015, 21, 14723.
[8] (a) Roll, D. M.; Manning, J. K.; Carter, G. T. J. Antibiot. 1998, 51, 635. For fermentation studies, see:
(b) Abbanat, D. A.; Singh, M. P.; Greenstein, M. J. Antibiot. 1998, 51, 708.
[9] Tsujimori, H.; Bando, M.; Mori, K. Eur. J. Org. Chem. 2000, 297.
[10] Kurdyumov, A. V.; Hsung, R. P. J. Am. Chem. Soc. 2006, 128, 6272.
[11] Rosen, B. R.; Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu, J.-Q.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 7317.
[12] For reviews on the field of photochemical reactions as key steps in natural product synthesis, see:(a) Bach, T.; Hehn. J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.
(b) Hoffmann. N. Chem. Rev. 2008, 108, 1052.
(c) Iriondo-Alberdi, J.; Greaney, M. F. Eur. J. Org. Chem. 2007, 4801.
[13] For recently selected examples on the field of applications of DDQ as aromatization reagent in natural product synthesis, see:(a) Li, H.; Chen, Q.; Lu, Z.; Li, A. J. Am. Chem. Soc. 2016, 138, 15555.
(b) Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A. Angew. Chem. Int. Ed. 2016, 55, 6964.
(c) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem. Int. Ed. 2015, 54, 6878. |