Acta Chimica Sinica ›› 2020, Vol. 78 ›› Issue (9): 938-944.DOI: 10.6023/A20060268 Previous Articles Next Articles
Article
杜重阳, 陈耀峰
投稿日期:
2020-06-24
发布日期:
2020-08-11
通讯作者:
陈耀峰
E-mail:yaofchen@mail.sioc.ac.cn
基金资助:
Du Chongyang, Chen Yaofeng
Received:
2020-06-24
Published:
2020-08-11
Supported by:
Share
Du Chongyang, Chen Yaofeng. ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block[J]. Acta Chimica Sinica, 2020, 78(9): 938-944.
[1] (a) Quaranta, E.; Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010. (b) Yu, B.; Liu, Z. M. Chin. Sci. Bull. 2015, 60, 1452(in Chinese). (于博, 刘志敏, 科学通报, 2015, 60, 1452). (c) Zhang, H.; Sun, H. J.; Li, X. Y. Chin. J. Org. Chem. 2016, 36, 2843(in Chinese). (仉花, 孙宏建, 李晓燕, 有机化学, 2016, 36, 2843). (d) Yang, Z. Z.; Gao, X.; Liu, Z. M. Curr. Opin. Green Sustain. Chem. 2016, 1, 13. (e) Zhang, S.; Li, X. D.; He, L. N. Acta Chim. Sinica 2016, 74, 17(in Chinese). (张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17). (f) Zhang, W. Z.; Zhang, N.; Guo, C. X.; Lv, X. B. Chin. J. Org. Chem. 2017, 37, 1309(in Chinese). (张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309). (g) Chen, Y. G.; Xu. X. T.; Zhang, K.; Li, Y. Q.; Zhang, L. P.; Fang, P.; Mei, T. S. Synthesis 2018, 50, 35. (h) Yan, S. S.; Fu, Q.; Liao, L. L.; Sun, G. Q.; Ye, J. H.; Gong, L.; Bo-Xue, Y. Z.; Yu, D. G. Coord. Chem. Rev. 2018, 374, 439. (i) Zhao, Y. F.; Liu, Z. M. Chin. J. Chem. 2018, 36, 455. (j) Feng, J. P.; Zeng, S. J.; Feng, J. Q.; Dong, H. F.; Zhang, X. P. Chin. J. Chem. 2018, 36, 961. (k) Wang, L.; Sun, W.; Liu, C. Chin. J. Chem. 2018, 36, 353. (l) Cao, Y.; He, X.; Wang, N.; Li, H. R.; He, L. N. Chin. J. Chem. 2018, 36, 644 (m) Chen, Z. Y.; Liu, J. W.; Cui, H, Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242). (n) Zhang, Z.; Gong, L., Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783(in Chinese). (张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783). (o) Liu, X. F.; Li, X. Y.; He, L. N. Eur. J. Org. Chem. 2019, 14, 2437. (p) Wang, S.; Xi, C. J. Chem. Soc. Rev. 2019, 48, 382. (q) Ran, C. K.; Chen, X. W.; Gui, Y. Y.; Liu, J.; Song, L.; Ren, K.; Yu, D. G. Sci. China Chem. 2020, DOI:10.1007/s11426-020-9788-2. [2] Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. Catal. Sci. Technol. 2014, 4, 611. [3] (a) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213. (b) Süss-Fink, G.; Reiner, J. Organomet. Chem. 1981, 221, C36. (c) Jansen, A.; Görls, H.; Pitter, S. Organometallics 2000, 19, 135. (d) Jansen, A.; Pitter, S. J. Mol. Catal. A:Chem. 2004, 217, 41. (e) Deglmann, P.; Ember, E.; Hofmann, P.; Pitter, S.; Walter, O. Chem.-Eur. J. 2007, 13, 2864. (f) Metsänen, T. T.; Oestreich, M. Organometallics 2015, 34, 543. [4] (a) Eisenschmid, T. C.; Eisenberg, R. Organometallics 1989, 8, 1822. (b) Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404. (c) Lalrempuia, R.; Iglesias, M.; Polo, V.; Sanz Miguel, P. J.; Fernández-Alvarez, F. J.; Pérez-Torrente, J. J.; Oro, L. A. Angew. Chem., Int. Ed. 2012, 51, 12824. [5] (a) Huckaba, A. J.; Hollis, T. K.; Reilly, S. W. Organometallics 2013, 32, 6248. (b) Itagaki, S.; Yamaguchi, K.;Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347. [6] Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg. Chem. 2014, 53, 9463. [7] (a) González-Sebastiaán, L.; Flores-Alamo, M.; García, J. J. Organometallics 2013, 32, 7186. (b) Ríos, P.; Curado, N.; López-Serrano, J.; Rodríguez, A. Chem. Commun. 2016, 52, 2114. (c) Singh, V.; Sakaki, S.; Deshmukh, M. M. Organometallics 2018, 37, 1258. [8] (a) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. Org. Lett. 2012, 14, 2642. (b) Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba, T. Chem.-Eur. J. 2013, 19, 10030. (c) Zhang, L.; Cheng, J.; Hou, Z. Chem. Commun. 2013, 49, 4782. (d) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011. [9] (a) Mitton, S. J.; Turculet, L. Chem.-Eur. J. 2012, 18, 15258. (b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074. [10] LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2014, 53, 789. [11] Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362. [12] Bertini, F.; Glatz, M.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2019, 9, 632. [13] (a) Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162. (b) Rauch, M.; Strater, Z.; Parkin, G. J. Am. Chem. Soc. 2019, 141, 17754. [14] (a) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322. (b) Wehmschulte, R. J.; Saleh, M.; Powell, D. R. Organometallics 2013, 32, 6812. (c) Courtemanche, M. A.; Légaré, M. A.; Rochette, É.; Fontaine, F. G. Chem. Commun. 2015, 51, 6858. (d) Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J. Am. Chem. Soc. 2016, 138, 5321. [15] (a) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660. (b) Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. J. Am. Chem. Soc. 2013, 135, 7751. [16] (a) Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim, Germany, 1997(translated by Lindley, C. R.). (b) Peter, G. M. Wuts. Greene's Protective Groups in Organic Synthesis, 5th ed., Wiley-VCH, Weinheim, 2014. [17] (a) Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T. Catal. Sci. Technol. 2013, 3, 2392. (b) Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton Trans. 2015, 44, 18138. (c) Zhang, S.; Mei, Q. Q.; Liu, H. Y.; Liu, H. Z.; Zhang, Z. P.; Han, B. X. RSC Adv., 2016, 6, 32370. (d) Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci China Chem. 2019, 62, 256. [18] (a) Molla, R. A.; Bhanja, P.; Ghosh, K.; Islam, S. S.; Bhaumik, A.; Islam, S. M. ChemCatChem 2017, 9, 1939. (b) Cui, X. J.; Zhang, Y.; Deng, Y. Q,; Shi, F. Chem. Commun. 2014, 50, 13521. (c) Luo, X. Y.; Zhang, H. Y.; Ke, Z. G.; Wu, C. L.; Guo, S. E.; Wu, Y. Y.; Yu, B.; Liu, Z. M. Sci. China Chem. 2018, 61, 725. [19] (a) Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453. (b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851. (c) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 344. (d) Schmid, L.; Canonica, A.; Baiker, A. Appl. Catal. A 2003, 255, 23. (e) Munshi, P.; Heldebrant, D. J.; McKoon, E. P.; Kelly, P. A.; Tai, C. C.; Jessop, P. G. Tetrahedron Lett. 2003, 44, 2725. (f) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. L. Angew. Chem. Int. Ed. 2015, 54, 6186. (g) Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000. [20] (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9777. (b) Frogneux, X.; Jacquet O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529. (c) Jayarathne, U.; Hazariand, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338. [21] (a) Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; BenDavid, Y.; Milstein, D. ACS Catal. 2017, 7, 2500. (b) Ke, Z. G.; Yang, Z. Z.; Liu, Z. H.; Yu, B.; Zhao, Y. F.; Guo, S. E.; Wu, Y. Y.; Liu, Z. M. Org. Lett. 2018, 20, 6622. [22] (a) Itagaki, S.; Yamaguchi, K.; Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347. (b) Nguyen, T. V. Q.; Yoo, W. J.; Kobayashi, S. Angew. Chem. Int. Ed. 2015, 54, 9209. (c) Lam, R. H.; McQueen, C. M. A.; Pernik, I.; McBurney, R. T.; Hill, A. F.; Messerle, B. A. Green Chem. 2019, 21, 538. [23] González-Sebastián, L.; Flores-Alamo, M.; García, M. Organometallics 2015, 34, 763. [24] (a) Mitsudome, T.; Urayama, T.; Fujita, S.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. ChemCatChem 2017, 9, 3632. (b) Tang, G.; Bao, H. L.; Jin, C.; Zhong, X. H.; Du, X. L. RSC Adv. 2015, 5, 99678. [25] (a) Fang, C.; Lu, C. L.; Liu, M. H.; Zhu, Y. L.; Fu, Y.; Lin, B. L. ACS Catal. 2016, 6, 7876. (b) Nale, D. B.; Bhanage, B. M. Synlett 2016, 27, 1413. [26] (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934. (b) Das, S.; Bobbink, F. D.; Bulut, S.; Soudani, M.; Dyson, P. J. Chem. Commun. 2016, 52, 2497. (c) Hao, L. D.; Zhao, Y. F.; Yu, B.; Yang, Z. Z.; Zhang, H. Y.; Han, B. X.; Gao, X.; Liu, Z. M. ACS Catal. 2015, 5, 4989. (d) Zhao, W. F.; Chi, X. P.; Li, H.; He, J.; Long, J. X.; Xu, Y. F.; Yang, S. Green Chem. 2019, 21, 567. (e) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem, Int. Ed. 2017, 56, 7425. (f) Lv, H.; Xing, Q.; Yue, C. T.; Lei Z. Q.; Li, F. W. Chem. Commun. 2016, 52, 6545. (g) Zhao, T. X.; Zhai, G. W.; Liang, J.; Li, P.; Hu X. B.; Wu, Y. T. Chem. Commun. 2017, 53, 8046. (h) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem. Int. Ed. 2012, 51, 187. (i) Liu, X. F.; Li, X. Y.; Qiao, C.; He, L. N. Synlett 2018, 29, 548. (j) Wang, M. Y.; Wang, N.; Liu, X. F.; Qiao, C.; He, L. N. Green Chem. 2018, 20, 1564. (k) Liu, X. F.; Ma, R.; Qiao, C.; Cao H.; He, L. N. Chem. Eur. J. 2016, 22, 16489. (l) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem. Int. Ed. 2017, 56, 7425. [27] Shi, F.; Zhang, Q. H.; Ma, Y. B.; He, Y.; Deng, Y. Q. J. Am. Chem. Soc. 2005, 127, 4182. [28] (a) Shi, F.; Deng, Y. Q.; SiMa, T. L.; Peng, J. J.; Gu, Y. L.; Qiao, B. T. Angew. Chem. Int. Ed. 2003, 42, 3257. (b) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem. 2007, 9, 158. [29] Tamura, M.; Ito, K.; Nakagawa, Y.; Tomishige, K. J. Catal. 2016, 343, 75. [30] Jurado-Vazquez, T.; García, J. J. Catal. Lett. 2018, 148, 1162. [31] Xu, M. T.; Jupp, A. R.; Stephan, D. W. Angew. Chem. Int. Ed. 2017, 56, 14277. [32] Ogura, H.; Takeda, K.; Tokue, R.; Kobayashi, T. Synthesis 1978, 394. [33] Cooper, C. F.; Falcone, S. J. Synth. Commun. 1995, 25, 2467. [34] Yamazaki, N.; Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 13, 1191. [35] Enthaler, S.; Wu, X. F. Zinc Catalysis:Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2015. [36] (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008. (b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. (c) Shimizu, K.; Sato, Y.; Mori, M.; Takimoto, M. Org. Lett. 2005, 7, 195. (d) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936. (e) Li, S.; Yuan, W.; Ma, S. M. Angew. Chem., Int. Ed. 2011, 50, 2578. (f) Yuan, R.; Lin, Z. Organometallics 2014, 33, 7147. [37] (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018. (b) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738. (c) Xiao, Y. L.; Wang, Z.; Ding, K. L. Chem. Eur. J. 2005, 11, 3668. (d) Reiter, M.; Vagin, S.; Kronast, A.; Jandl, C.; Rieger, B. Chem. Sci. 2017, 8, 1876. [38] (a) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2012, 134, 17462. (b) Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323. (c) Rit, A.; Zanardi, A.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2014, 53, 13273. (d) Specklin, D.; Fliedel, C.; Gourlaouen, C.; Bruyere, J. C.; Avilés, T.; Boudon, C.; Ruhlmann, L.; Dagorne, S. Chem.-Eur. J. 2017, 23, 5509. (e) Specklin, D.; Hild, F.; Fliedel, C.; Gourlaouen, C.; Veiros, L. F.; Dagorne, S. Chem.-Eur. J. 2017, 23, 15908. (f) Tüchler, M.; Gärtner, L.; Fischer, S.; Boese, A. D.; Belaj, F.; Mösch-Zanetti, N. C. Angew. Chem. Int. Ed. 2018, 57, 6906. [39] Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. Chem. Sci. 2013, 4, 2127. [40] Luo, R. C.; Lin, X. W.; Chen, Y. J.; Zhang, W. Y.; Zhou, X. T.; Ji, H. B. ChemSusChem 2017, 10, 1224. [41] Feng, G. Q.; Du, C. Y.; Xiang, L.; Rosal, I. D.; Li, G. Y.; Leng, X. B.; Chen, E. Y.-X.; Maron, L.; Chen, Y. F. ACS Catal. 2018, 8, 4710. [42] Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057. [43] George, H. W. US 2530367, 1950[Chem. Abstr. 1950, 66, 790230]. [44] Dobrovetsky, R.; Stephan, D. W. Isr. J. Chem. 2015, 55, 206. [45] Heyn, H. H. Advances in Inorganic Chemistry, Vol. 66, Eds.:Jacobs, I.; Carr, R. H., Elsevier, 2014, Chapter three, pp. 83~115. |
[1] | Liang Huan, Gou Along, Gao Zhupeng, Lei Linsheng, Wang Bowen, Yu Lan, Xu Xuetao, Wang Shaohua. A New Strategy for the Synthesis of Tertiary Amides via a Copper-Catalyzed Decyanation Reaction of N,N-Disubstituted 2-Aminomalononitriles [J]. Acta Chimica Sinica, 2020, 78(10): 1064-1068. |
[2] | Zhang Qi, Liu Ao, Yu Haizhu, Fu Yao. Hydride Source in Ethers Hydrosilylation Reaction Catalyzed by Brookhart's Ir(Ⅲ) Pincer Complex [J]. Acta Chim. Sinica, 2018, 76(2): 113-120. |
[3] | LV Jing, JIANG Yong-Jun, YU Qing-Sen, ZOU Jian-Wei. Molecular Docking and Molecular Dynamics Simulations of Inhibitors Binding to Jack Bean Urease [J]. Acta Chimica Sinica, 2011, 69(20): 2427-2433. |
[4] | XIANG Jing-Ya, LI Jia-Yun, BANG Jia-Jian, BAI Ying, HU Ying-Gan, LAI Guo-Qiao. Catalytic Hydrosilylation of Ketones Using KOBu-t [J]. Acta Chimica Sinica, 2010, 68(04): 363-366. |
[5] | PENG Jia-Jian. Activated Carbon-Supported Bimetallic Catalyst Pt-Cu/C Using Cu(PPh3)2BH4 as Reductant: Preparation and Efficient Catalytic Performance in Hydrosilylation of Alkenes [J]. Acta Chimica Sinica, 2009, 67(10): 1155-1158. |
[6] | LI Jia-Yun PENG Jia-Jian WU Hui BAI Ying QIU Hua-Yu* JIANG Jian-Xiong LAI Guo-Qiao*. Hydrosilylation of Alkenes Catalyzed with Rh(PPh3)3Cl/Organic Molten Salt [J]. Acta Chimica Sinica, 2008, 66(9): 1009-1014. |
[7] | LI Jia-Yun; PENG Jia-Jian; QIU Hua-Yu; JIANG Jian-Xiong; WU Ji-Rong; NI Yong; LAI Guo-Qiao*. Study on Hydrosilylation Catalyzed by Transition Metal Rhodium and Ruthenium Complexes in Ionic Liquids [J]. Acta Chimica Sinica, 2007, 65(8): 715-721. |
[8] | ZHANG Zheng-Hua; XU Wei-Jian; LU Yan-Bing; XIONG Yuan-Qin; AN De-Lie; PENG Zhi-Hong*. Study on Aldehyde Hydrosilylation Selectively Catalyzed by Organotin Oxo Cluster [J]. Acta Chimica Sinica, 2007, 65(24): 2905-2908. |
[9] | LIANG Zu-Pei, FENG Ya-Qing*, LIANG Zhi-Yan, MENG Shu-Xian, LIU Xin-Gang. Adsorption Equilibrium and Kinetics of Urea Nitrogen onto Dialdehyde Cellulose under Catalysis of Immobilized Urease [J]. Acta Chimica Sinica, 2006, 64(3): 255-260. |
[10] | YANG Juan; WANG Gui-You*; HU Chun-Pu. Effect of Chain Extenders on Structures and Properties of Aliphatic Polyurethaneureas and Polyureas [J]. Acta Chimica Sinica, 2006, 64(16): 1737-1742. |
[11] | BAN Wen-Bin1,2, LIU Wei-Qu*,1, SHEN De-Yan1,2, HOU Meng-Hua1,2. Synthesis of Water-based Fluorosilicone from Poly(methylhydrosiloxane) [J]. Acta Chimica Sinica, 2006, 64(12): 1260-1264. |
[12] | Lin Juanjuan;Wang Shun;Gao Qingyu;Wang Xinhong;Xu Liangqin. Nonlinear Kinetic Behavior and Mechanism of the Oxidation of Thiourea by Periodate [J]. Acta Chimica Sinica, 2003, 61(9): 1346-1351. |
[13] | Zhou Liping;Zhou Yonghua;Liu Shushen;Li Zhiliang. Structural Characterization of Cyclic Ureas through MEDV and Anti- HIV Activity Prediction by QSAR [J]. Acta Chimica Sinica, 2002, 60(9): 1688-1693. |
[14] | Shi Mei;Zhang Jinnan;Li Qi. Synthesis and Crystal Structure of Layer Type Inclusion Compound of Thiourea with Tetraethylammonium Tartrate and Water [J]. Acta Chimica Sinica, 2002, 60(6): 1017-1022. |
[15] | LI HONG;YAO JINSHUI;HE BINGLIN. Asymmetric hydrosilation of acetophenone catalyzed by a chiral thiazolidine-rhodium(I) complex [J]. Acta Chimica Sinica, 1998, 56(2): 189-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||