Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (5): 628-640.DOI: 10.6023/A21010038 Previous Articles Next Articles
Review
李宛飞a,b,*(), 李鑫a,b, 范海燕c, 肖建华c, 刘倩倩a,b, 程淼a,b, 胡敬a,b, 魏涛a,b, 吴正颖b, 凌云a, 刘波a,b, 张跃钢c,*()
投稿日期:
2021-01-31
发布日期:
2021-05-18
通讯作者:
李宛飞, 张跃钢
作者简介:
李宛飞, 苏州科技大学副教授, 硕士生导师. 承担国家自然科学基金2项, 曾参与国家自然科学基金重点项目、中国科学院国际合作局对外合作重点项目、国家重点研发计划新能源汽车重点专项项目、省市级科研项目以及企业横向合作项目10余项. 已在Angew. Chem. Int. Ed., Nano Lett., J. Mater. Chem. A等学术期刊发表文章60余篇, 获授权发明专利18项. 主要研究方向为功能纳米材料合成及结构表征、新型电化学能源存储器件研究等. |
李鑫, 硕士研究生. 本科毕业于河南师范大学化学化工学院, 2019年起于苏州科技大学材料科学与工程学院攻读材料学硕士学位. 主要研究方向为镁离子电池材料和电解液. |
范海燕, 理学博士, 2020年毕业于中国科学技术大学, 现为清华大学博士后. 主要研究方向为可充镁二次电池电解液的设计合成和性能调控. |
肖建华, 博士研究生. 本科毕业于湖南大学物理与微电子科学学院, 2018年起于清华大学物理系攻读物理学博士学位. 主要研究方向为新型镁电池电解液的设计合成和性能优化. |
刘波, 博士生导师, 研究员. 主持国家纳米重大科学研究计划(973)项目、国家863计划重点项目子课题、国家863计划目标导向类项目、上海市和江苏省等科研项目19项; 发表SCI论文220篇、授权发明专利123项. 主要研究方向为纳米光电材料与器件(信息存储材料与器件、新能源材料与器件、传感器材料与器件). |
张跃钢, 清华大学物理系长聘教授, 博士生导师. 先后在Science、JACS、Angew. Chem. Int. Ed.、Nano Lett.等国际期刊发表论文160余篇, 获得授权专利30余项. 主要研究方向为纳米材料合成与表征、纳米器件制造与测试、能源存储器件研究及原位测试技术等. |
基金资助:
Wanfei Lia,b,*(), Xin Lia,b, Haiyan Fanc, Jianhua Xiaoc, Qianqian Liua,b, Miao Chenga,b, Jing Hua,b, Tao Weia,b, Zhengying Wub, Yun Linga, Bo Liua,b, Yuegang Zhangc,*()
Received:
2021-01-31
Published:
2021-05-18
Contact:
Wanfei Li, Yuegang Zhang
About author:
Supported by:
Share
Wanfei Li, Xin Li, Haiyan Fan, Jianhua Xiao, Qianqian Liu, Miao Cheng, Jing Hu, Tao Wei, Zhengying Wu, Yun Ling, Bo Liu, Yuegang Zhang. Progress of Non-Nucleophilic Electrolytes for Magnesium/Sulfur Battery[J]. Acta Chimica Sinica, 2021, 79(5): 628-640.
Non-nucleophilic magnesium sulfur battery electrolytes | Oxidative stability/V | Coulombic efficiency | Sulfur cathode | Mg-S battery capacity/(mAh/g)@current rate/(mA/g) (cycle) | Ref. | |
---|---|---|---|---|---|---|
Mononuclear electrolytes | [Mg(THF)6][AlCl4]2 | 2.5 | 100% | S/N-doped graphene (mechanic mixing) | 40@17 (20th) | [ |
[Mg(THF)6][AlCl4]2+LiCl | 3.6 | 98% | NG-NCNT@NCS@S (melt-diffusion) | 300@670 (500th) | [ | |
[Mg(DG)2][HMDSAlCl3]2 | 3.5 | 100% | S/C/Graphene/CNT (mechanic mixing) | 400@83 (100th) | [ | |
MgCl-FTGB | 4.8 | 100% | NG-NCNT@NCS@S (melt-diffusion) | 1100@167 (50th) | [ | |
[Mg(DME)3][B(hfip)4]2) | 4.5 | 100% | ACCS (melt-diffusion) | 200@167 (100th) | [ | |
BCM | 3.5 | 99% | S/C (melt-diffusion) | 934@50 (30th) | [ | |
BMOC | 4.2 | — | S/C (melt-diffusion) | 1133@10 (10th) | [ | |
Mg(BH4)2/THFPB-DGM | 2.8 | 99% | S/C (melt-diffusion) | 526@50 (30th) | [ | |
Mg(TFSI)2 | 3.4 | 96% | CMK-3/S (melt-diffusion) | 200@34 (4th) | [ | |
Mg[BH4]2+Li[BH4] | — | — | SPAN (high-temperature reaction) | 800@833 (300th) | [ | |
Binuclear electrolytes | [Mg2(μ-Cl)3][HMDSAlCl3] (HMDSMgCl+AlCl3) | 3.3 | 100% | S/C (mechanic mixing) | 394@83 (2nd) | [ |
[Mg2(μ-Cl)3][HMDSAlCl3] (Mg(HMDS)2+AlCl3+MgCl2) | 3.2 | 98% | S/CMK (melt-diffusion) | 260@20 (20th) | [ | |
Non-nucleophilic magnesium sulfur battery electrolytes | Oxidative stability/V | Coulombic efficiency | Sulfur cathode | Mg-S battery capacity/(mAh/g)@current rate/(mA/g) (cycle) | Ref. | |
[Mg2(μ-Cl)2?6THF][AlCl4]2 | 2.6 | 97% | S@MC (melt-diffusion) | 400@67 (100th) | [ | |
[Mg2(μ-Cl)2?4DME][AlCl4]2 | 3.7 | 100% | CMK/S (melt-diffusion) | 360@100 (50th) | [ | |
[Mg2(μ-Cl)3?6THF][TFSI] | 3.0 | 93% | ACC/S (melt-diffusion) | 600@100 (100th) | [ | |
Multinuclear electrolyte | [Mg4Cl6(DME)6]?[B(OCH(CF3)2)4]2 | 3.3 | 98% | S/C (melt-diffusion) | 1000@160 (100th) | [ |
Other electrolytes | (PhMgCl)2+AlCl3+LiCl | — | — | S@MC (melt-diffusion) | 400@167 (200th) | [ |
MgCl2+YCl3 | 3.0 | 98% | MgS8@G-CNT | 1000@80 (50th) | [ |
Non-nucleophilic magnesium sulfur battery electrolytes | Oxidative stability/V | Coulombic efficiency | Sulfur cathode | Mg-S battery capacity/(mAh/g)@current rate/(mA/g) (cycle) | Ref. | |
---|---|---|---|---|---|---|
Mononuclear electrolytes | [Mg(THF)6][AlCl4]2 | 2.5 | 100% | S/N-doped graphene (mechanic mixing) | 40@17 (20th) | [ |
[Mg(THF)6][AlCl4]2+LiCl | 3.6 | 98% | NG-NCNT@NCS@S (melt-diffusion) | 300@670 (500th) | [ | |
[Mg(DG)2][HMDSAlCl3]2 | 3.5 | 100% | S/C/Graphene/CNT (mechanic mixing) | 400@83 (100th) | [ | |
MgCl-FTGB | 4.8 | 100% | NG-NCNT@NCS@S (melt-diffusion) | 1100@167 (50th) | [ | |
[Mg(DME)3][B(hfip)4]2) | 4.5 | 100% | ACCS (melt-diffusion) | 200@167 (100th) | [ | |
BCM | 3.5 | 99% | S/C (melt-diffusion) | 934@50 (30th) | [ | |
BMOC | 4.2 | — | S/C (melt-diffusion) | 1133@10 (10th) | [ | |
Mg(BH4)2/THFPB-DGM | 2.8 | 99% | S/C (melt-diffusion) | 526@50 (30th) | [ | |
Mg(TFSI)2 | 3.4 | 96% | CMK-3/S (melt-diffusion) | 200@34 (4th) | [ | |
Mg[BH4]2+Li[BH4] | — | — | SPAN (high-temperature reaction) | 800@833 (300th) | [ | |
Binuclear electrolytes | [Mg2(μ-Cl)3][HMDSAlCl3] (HMDSMgCl+AlCl3) | 3.3 | 100% | S/C (mechanic mixing) | 394@83 (2nd) | [ |
[Mg2(μ-Cl)3][HMDSAlCl3] (Mg(HMDS)2+AlCl3+MgCl2) | 3.2 | 98% | S/CMK (melt-diffusion) | 260@20 (20th) | [ | |
Non-nucleophilic magnesium sulfur battery electrolytes | Oxidative stability/V | Coulombic efficiency | Sulfur cathode | Mg-S battery capacity/(mAh/g)@current rate/(mA/g) (cycle) | Ref. | |
[Mg2(μ-Cl)2?6THF][AlCl4]2 | 2.6 | 97% | S@MC (melt-diffusion) | 400@67 (100th) | [ | |
[Mg2(μ-Cl)2?4DME][AlCl4]2 | 3.7 | 100% | CMK/S (melt-diffusion) | 360@100 (50th) | [ | |
[Mg2(μ-Cl)3?6THF][TFSI] | 3.0 | 93% | ACC/S (melt-diffusion) | 600@100 (100th) | [ | |
Multinuclear electrolyte | [Mg4Cl6(DME)6]?[B(OCH(CF3)2)4]2 | 3.3 | 98% | S/C (melt-diffusion) | 1000@160 (100th) | [ |
Other electrolytes | (PhMgCl)2+AlCl3+LiCl | — | — | S@MC (melt-diffusion) | 400@167 (200th) | [ |
MgCl2+YCl3 | 3.0 | 98% | MgS8@G-CNT | 1000@80 (50th) | [ |
[1] |
Armand, M.; Tarascon, J. M. Nature, 2008, 451,652.
doi: 10.1038/451652a pmid: 18256660 |
[2] |
Goodenough, J. B. Energy Environ. Sci. 2014, 7,14.
doi: 10.1039/C3EE42613K |
[3] |
Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7,19.
doi: 10.1038/nchem.2085 pmid: 25515886 |
[4] |
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334,928.
doi: 10.1126/science.1212741 |
[5] |
Soloveichik, G. L. Annu. Rev. Chem. Biomol. Eng. 2011, 2,503.
doi: 10.1146/annurev-chembioeng-061010-114116 pmid: 22432629 |
[6] |
Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22,691.
|
[7] |
Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135,1167.
doi: 10.1021/ja3091438 |
[8] |
Erickson, E. M.; Ghanty, C.; Aurbach, D. J. Phys. Chem. Lett. 2014, 5, 3313.
|
[9] |
Croguennec, L.; Palacin, M. R. J. Am. Chem. Soc. 2015, 137,3140.
doi: 10.1021/ja507828x |
[10] |
Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22,E28.
doi: 10.1002/adma.v22:8 |
[11] |
Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Adv. Mater. 2011, 23,1695.
doi: 10.1002/adma.201003587 |
[12] |
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4,3243.
doi: 10.1039/c1ee01598b |
[13] |
Xia, L.; Yu, L. P.; Hu, D.; Chen, Z. Acta Chim. Sinica 2017, 75,1183. (in Chinese).
doi: 10.6023/A17060284 |
( 夏兰, 余林颇, 胡笛, 陈政, 化学学报, 2017, 75,1183.)
doi: 10.6023/A17060284 |
|
[14] |
Deng, B. W.; Sun, D. M.; Wan, Q.; Wang, H.; Chen, T.; Li, X.; Qu, M. Z.; Peng, G. C. Acta Chim. Sinica 2018, 76,259. (in Chinese).
doi: 10.6023/A17110517 |
( 邓邦为, 孙大明, 万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂, 化学学报, 2018, 76,259.)
doi: 10.6023/A17110517 |
|
[15] |
Qiu, H. Y.; Zhao, J. W.; Zhou, X. H.; Cui, G. L. Acta Chim. Sinica 2018, 76,749. (in Chinese).
doi: 10.6023/A18060248 |
( 邱华玉, 赵井文, 周新红, 崔光磊, 化学学报, 2018, 76,749.)
doi: 10.6023/A18060248 |
|
[16] |
Li, Z.; Wang, Z.; Ban, L. Q.; Wang, J. T.; Lu, S. G. Acta Chim. Sinica 2019, 77,1115. (in Chinese).
doi: 10.6023/A19070265 |
( 李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77,1115.)
doi: 10.6023/A19070265 |
|
[17] |
Yu, Z.; Zhang, J. J.; Liu, T. T.; Tang, B.; Yang, X. Y.; Zhou, X. H.; Cui, G. L. Acta Chim. Sinica 2020, 78,114. (in Chinese).
doi: 10.6023/A19100385 |
( 于喆, 张建军, 刘亭亭, 唐犇, 杨晓燕, 周新红, 崔光磊, 化学学报, 2020, 78,114.)
doi: 10.6023/A19100385 |
|
[18] |
Yang, Y.; Zheng, G.; Cui, Y. Chem. Soc. Rev. 2013, 42,3018.
doi: 10.1039/c2cs35256g |
[19] |
Muldoon, J.; Bucur, C. B.; Gregory, T. Chem. Rev. 2014, 114,11683.
doi: 10.1021/cr500049y |
[20] |
Lin, M. C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D. Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B. J.; Dai, H. Nature 2015, 520,325.
|
[21] |
Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52,13186.
doi: 10.1002/anie.201304762 |
[22] |
Manthiram, A.; Chung, S.-H.; Zu, C. X. Adv. Mater. 2015, 27,1980.
doi: 10.1002/adma.v27.12 |
[23] |
Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Nano Res. 2016, 9,94.
doi: 10.1007/s12274-016-1027-8 |
[24] |
Pope, M. A.; Aksay, I. A. Adv. Energy Mater. 2015, 5,1500124.
doi: 10.1002/aenm.201500124 |
[25] |
Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M. Adv. Energy Mater. 2015, 5,1500117.
doi: 10.1002/aenm.201500117 |
[26] |
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat. Mater. 2012, 11,19.
doi: 10.1038/nmat3191 |
[27] |
Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Adv. Funct. Mater. 2018, 28,1802564.
doi: 10.1002/adfm.v28.41 |
[28] |
Ponrouch, A.; Bitenc, J.; Dominko, R.; Lindahl, N.; Johansson, P.; Palacin, M. R. Energy Storage Mater. 2019, 20,253.
|
[29] |
Sui, Y. M.; Liu, C. F.; Masse, R. C.; Neale, Z. G.; Atif, M.; Alsalhi, M.; Cao, G. Z. Energy Storage Mater. 2020, 25,1.
|
[30] |
Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407,724.
pmid: 11048714 |
[31] |
Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energy Environ. Sci. 2013, 6,2265.
doi: 10.1039/c3ee40871j |
[32] |
Zhang, Z. H.; Dong, S. M.; Cui, Z. L.; Du, A. B.; Li, G. C.; Cui, G. L. Small Methods 2018, 2,1800020.
doi: 10.1002/smtd.v2.10 |
[33] |
Kong, L.; Yan, C.; Huang, J. Q.; Zhao, M. Q.; Titirici, M. M.; Xiang, R.; Zhang, Q. Energy Environ. Mater. 2018, 1,100.
doi: 10.1002/eem2.12012 |
[34] |
Wang, P. W.; Buchmeiser, M. R. Adv. Funct. Mater. 2019, 29,1905248.
doi: 10.1002/adfm.v29.49 |
[35] |
Pan, Y. D.; Li, S. L.; Yin, M. M.; Li, J. Y. Energy Technol. 2019, 7,1900164.
doi: 10.1002/ente.v7.12 |
[36] |
Yu, X. W.; Manthiram, A. Adv. Funct. Mater. 2020, 30,2004084.
doi: 10.1002/adfm.v30.39 |
[37] |
Guo, Z. Q.; Zhao, S. Q.; Li, T. X.; Su, D. W.; Guo, S. J.; Wang, G. X. Adv. Energy Mater. 2020, 10,1903591.
doi: 10.1002/aenm.v10.21 |
[38] |
Rashad, M.; Asif, M.; Ali, Z. Coord. Chem. Rev. 2020, 415,213312.
doi: 10.1016/j.ccr.2020.213312 |
[39] |
Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Nat. Energy 2020, 5,646.
doi: 10.1038/s41560-020-0655-0 |
[40] |
Aurbach, D.; Weissman, I.; Gofer, Y.; Levi, E. J. Electrochem. Soc. 1990, 3,61.
|
[41] |
Lu, Z.; Schechter, A.; Moshkovich, M.; Aurbach, D. J. Electroanal. Chem. 1999, 466,203.
doi: 10.1016/S0022-0728(99)00146-1 |
[42] |
Liebenow, C. J. Appl. Chem. 1997, 27,221.
|
[43] |
Aurbach, D.; Moshkovich, M.; Schechter, A.; Turgeman, R. Electrochem. Solid State Lett. 2000, 3,31.
doi: 10.1149/1.1390949 |
[44] |
Liebenow, C.; Yang, Z.; Lobitz, P. Electrochem. Commun. 2000, 2,641.
doi: 10.1016/S1388-2481(00)00094-1 |
[45] |
Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J. Nat. Commun. 2011, 2,427.
doi: 10.1038/ncomms1435 |
[46] |
Li, Y. Q.; Zuo, P. J.; Li, R. N.; Ma, Y. L.; Yin, G. P. Prog. Chem. 2017, 29,553. (in Chinese).
|
( 李亚琦, 左朋建, 李睿楠, 马玉林, 尹鸽平, 化学进展, 2017, 29,553.)
doi: 10.7536/PC170203 |
|
[47] |
Xiao, J. H.; Zhao, Y. X.; Fan, H. Y.; Yuan, H.; Zhang, Y. G. J. Chin. Ceram. Soc. 2020, 48,963. (in Chinese).
|
( 肖建华, 赵宇星, 范海燕, 原华, 张跃钢, 硅酸盐学报, 2020, 48,963.)
|
|
[48] |
Li, W. F.; Liu, M. N.; Wang, J.; Zhang, Y. G. Acta Phys.-Chim. Sin. 2017, 33,165. (in Chinese).
doi: 10.3866/PKU.WHXB201609232 |
( 李宛飞, 刘美男, 王健, 张跃钢, 物理化学学报, 2017, 33,165.)
|
|
[49] |
Zhao-Karger, Z.; Zhao, X.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M. Adv. Energy Mater. 2015, 5,1401155.
doi: 10.1002/aenm.201401155 |
[50] |
Yu, X.; Manthiram, A. ACS Energy Lett. 2016, 1,431.
doi: 10.1021/acsenergylett.6b00213 |
[51] |
Gao, T.; Ji, X.; Hou, S.; Fan, X. L.; Li, X. G.; Yang, C. Y.; Han, F. D.; Wang, F.; Jiang, J. J.; Xu, K.; Wang, C. S. Adv. Mater. 2018, 30,1704313.
doi: 10.1002/adma.v30.3 |
[52] |
Xu, Y.; Ye, Y. F.; Zhao, S. Y.; Feng, J.; Li, J.; Chen, H.; Yang, A. K.; Shi, F. F.; Jia, L. J.; Wu, Y.; Yu, X. Y.; Glans-Suzuki, P.; Cui, Y.; Guo, J. H.; Zhang, Y. G. Nano Lett. 2019, 19,2928.
doi: 10.1021/acs.nanolett.8b05208 |
[53] |
Li, W.; Cheng, S.; Wang, J.; Qiu, Y.; Zheng, Z.; Lin, H.; Nanda, S.; Ma, Q.; Xu, Y.; Ye, F.; Liu, M.; Zhou, L.; Zhang, Y. Angew. Chem. Int. Ed. 2016, 55,6406.
doi: 10.1002/anie.201600256 |
[54] |
Fan, H. Y.; Zheng, Z. Z.; Zhao, L. J.; Li, W. F.; Wang, J.; Dai, M. M.; Zhao, Y. X.; Xiao, J. H.; Wang, G.; Ding, X. Y.; Xiao, H.; Li, J.; Wu, Y.; Zhang, Y. G. Adv. Funct. Mater. 2020, 30,1909370.
doi: 10.1002/adfm.v30.9 |
[55] |
Xu, Y.; Li, W. F.; Zhou, G. M.; Pan, Z. H.; Zhang, Y. G. Energy Storage Mater. 2018, 14,253.
|
[56] |
Fan, H. Y.; Zhao, Y. X.; Xiao, J. H.; Zhang, J. F.; Wang, M.; Zhang, Y. G. Nano Res. 2020, 13,2749.
doi: 10.1007/s12274-020-2923-5 |
[57] |
Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Joule 2019, 3,27.
doi: 10.1016/j.joule.2018.10.028 |
[58] |
Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Zajicek, J.; Allred, G. D.; Boggess, W. C. Energy Environ Sci. 2013, 6,482.
doi: 10.1039/C2EE23686A |
[59] |
Ha, J. H.; Cho, J. H.; Kim, J. H.; Cho, B. W.; Oh, S. H. J. Power Sources 2017, 355,90.
doi: 10.1016/j.jpowsour.2017.04.041 |
[60] |
Zhao-Karger, Z.; Bardaji, M. E. G.; Fuhr, O.; Fichtner, M. J. Mater. Chem. A 2017, 5,10815.
doi: 10.1039/C7TA02237A |
[61] |
Zhao-Karger, Z.; Liu, R. Y.; Dai, W. X.; Li, Z. Y.; Diemant, T.; Vinayan, B. P.; Minella, C. B.; Yu, X. W.; Manthiram, A.; Behm, R. J.; Ruben, M.; Fichtner, M. ACS Energy Lett. 2018, 3,2005.
doi: 10.1021/acsenergylett.8b01061 |
[62] |
Parambath, V. B.; Zhao-Karger, Z.; Diemant, T.; Jackle, M.; Li, Z. Y.; Scherer, T.; Gross, A.; Behm, R. J.; Fichtner, M. J. Mater. Chem. A 2020, 8,22998.
doi: 10.1039/D0TA05762B |
[63] |
Luo, J.; Bi, Y. J.; Zhang, L. P.; Zhang, X. Y.; Liu, T. B. L. Angew. Chem. Int. Ed. 2019, 58,6967.
doi: 10.1002/anie.v58.21 |
[64] |
Zhang, Z. H.; Cui, Z. L.; Qiao, L. X.; Guan, J.; Xu, H. M.; Wang, X. G.; Hu, P.; Du, H. P.; Li, S. Z.; Zhou, X. H.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. Adv. Energy Mater. 2017, 7,1602055.
doi: 10.1002/aenm.v7.11 |
[65] |
Xu, H. M.; Zhang, Z. H.; Cui, Z. L.; Du, A. B.; Lu, C. L.; Dong, S. M.; Ma, J.; Zhou, X. H.; Cui, G. L. Electrochem. Commun. 2017, 83,72.
doi: 10.1016/j.elecom.2017.09.001 |
[66] |
Xu, H. M.; Zhang, Z. H.; Li, J. J.; Qiao, L. X.; Lu, C. L. Tang, K.; Dong, S. M.; Ma, J.; Liu, Y. J.; Zhou, X. H.; Cui, G. L. ACS Appl. Mater. Interfaces 2018, 10,23757.
doi: 10.1021/acsami.8b04674 |
[67] |
Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K. T.; Choi, N. S. ACS Appl. Mater. Interfaces 2014, 6,4063.
doi: 10.1021/am405619v |
[68] |
Wang, P. W.; Truck, J.; Niesen, S.; Kappler, J.; Kuster, K.; Starke, U.; Ziegler, F.; Hintennach, A.; Buchmeiser, M. R. Batteries & Supercaps 2020, 3,1239.
|
[69] |
Mohtadi, O. R.; Matsui, M.; Arthur, T. S.; Hwang, S. J. Angew. Chem., Int. Ed. 2012, 51,9780.
doi: 10.1002/anie.201204913 |
[70] |
Vinayan, B. P.; Zhao-Karger, Z.; Diemant, T.; Chakravadhanula, V. S. K.; Schwarzburger, N. I.; Cambaz, M. A.; Behm, R. J.; Kubel, C.; Fichtner, M. Nanoscale 2016, 8,3296.
doi: 10.1039/c5nr04383b pmid: 26542750 |
[71] |
Gao, T.; Noked, M.; Pearse, A. J.; Gillette, E.; Fan, X.; Zhu, Y.; Luo, C.; Suo, L.; Schroeder, M. A.; Xu, K.; Lee, S. B.; Rubloff, G. W.; Wang, C. J. Am. Chem. Soc. 2015, 137,12388.
doi: 10.1021/jacs.5b07820 |
[72] |
Zhou, X. J.; Tian, J.; Hu, J. L.; Li, C. L. Adv. Mater. 2018, 30,1704166.
doi: 10.1002/adma.201704166 |
[73] |
Muthuraj, D.; Ghosh, A.; Kumar, A.; Mitra, S. ChemElectroChem 2019, 6,684.
doi: 10.1002/celc.v6.3 |
[74] |
Zhao, X. H.; Yang, Y. Y.; NuLi, Y. N.; Li, D. Y.; Wang, Y. R.; Xiang, X. L. Chem. Commun. 2019, 55,6086.
doi: 10.1039/C9CC02556A |
[75] |
Bi, Y. J.; He, S. J.; Fan, C. B.; Luo, J.; Yuan, B.; Liu, T. L. J. Mater. Chem. A 2020, 8,12301.
doi: 10.1039/D0TA02041A |
[76] |
Sa, N. Y.; Pan, B. F.; Saha-Shah, A.; Hubaud, A. A.; Vaughey, J. T.; Baker, L. A.; Liao, C.; Burrell, A. K. ACS Appl. Mater. Interfaces 2016, 8,16002.
doi: 10.1021/acsami.6b03193 |
[77] |
Gao, T.; Hou, S.; Wang, F.; Ma, Z. H.; Li, X. G.; Xu, K.; Wang, C. S. Angew. Chem. Int. Ed. 2017, 56,13526.
doi: 10.1002/anie.201708241 |
[78] |
Du, A. B.; Zhang, Z. H.; Qu, H. T.; Cui, Z. L.; Qiao, L. X.; Wang, L. L.; Chai, J. C.; Lu, T.; Dong, S. M.; Dong, T. T.; Xu, H. M.; Zhou, X. H.; Cui, G. L. Energy Environ. Sci. 2017, 10,2616.
doi: 10.1039/C7EE02304A |
[79] |
Wang, W. Q.; Yuan, H. C.; Nuli, Y.; Zhou, J. J.; Yang, J.; Wang, J. L. J. Phys. Chem. C 2018, 122,26764.
doi: 10.1021/acs.jpcc.8b09003 |
[80] |
Xu, Y.; Zhou, G. M.; Zhao, S. Y.; Li, W. F.; Shi, F. F.; Li, J.; Feng, J.; Zhao, Y. X.; Wu, Y.; Guo, J. H.; Cui, Y.; Zhang, Y. G. Adv. Sci. 2019, 6,1800981.
doi: 10.1002/advs.v6.4 |
[81] |
Muthuraj, D.; Pandey, M.; Krishna, M.; Ghosh, A.; Sen, R.; Johari, P.; Mitra, S. J. Power Sources 2021, 486,229326.
doi: 10.1016/j.jpowsour.2020.229326 |
[82] |
Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Energy Environ. Sci. 2012, 5,5941.
doi: 10.1039/c2ee03029b |
[1] | Diao Yan, Xie Kai, Hong Xiaobin, Xiong Shizhao. Analysis of the Sulfur Cathode Capacity Fading Mechanism and Review of the Latest Development for Li-S Battery [J]. Acta Chimica Sinica, 2013, 71(04): 508-518. |
[2] | LI Wei-Yang, CAI Feng-Shi, GOU Xing-Long, GAO Feng, CHEN Jun*. Synthesis, Characterization and Electrochemical Properties of Ni(OH)2 Nanotubes [J]. Acta Chimica Sinica, 2005, 63(5): 411-415. |
[3] | ZHU Xin-Gong,WU Zhi-Yuan*,WANG Min,ZHAO Yong. Investigation of the Rechargeability of the Cr-birnessite in Aqueous Solution [J]. Acta Chimica Sinica, 2005, 63(3): 229-233. |
[4] | LIU Xing-Quan, LIN Xiao-Jing, HE Ze-Zhen, TANG Yi, LI Shu-Hua, TANG Jian-Chuan. Synthesis and Electrochemical Performances of Li1+δNi1-xCoxO2-yFy [J]. Acta Chimica Sinica, 2004, 62(5): 475-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||