Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (8): 1091-1099.DOI: 10.6023/A22010041 Previous Articles Next Articles
Article
王怡戈a,b, 李航越a,b, 吕泽伟a,b, 韩敏芳a,b,*(), 孙凯华c
投稿日期:
2022-01-22
发布日期:
2022-09-01
通讯作者:
韩敏芳
基金资助:
Yige Wanga,b, Hangyue Lia,b, Zewei Lyua,b, Minfang Hana,b(), Kaihua Sunc
Received:
2022-01-22
Published:
2022-09-01
Contact:
Minfang Han
Supported by:
Share
Yige Wang, Hangyue Li, Zewei Lyu, Minfang Han, Kaihua Sun. Study of Operating Conditions for High Efficiency and Anode Safety of Industrial-Size Solid Oxide Fuel Cell[J]. Acta Chimica Sinica, 2022, 80(8): 1091-1099.
Current/A | ηele,maxa/% | Ufuelb/% | Fuel flow rate/(L•min–1) | Voltage/V | Power/W |
---|---|---|---|---|---|
10 | 53.57 | 87.10 | 0.08 | 0.771 | 7.71 |
20 | 52.92 | 87.10 | 0.16 | 0.761 | 15.23 |
30 | 50.47 | 87.10 | 0.24 | 0.726 | 21.78 |
Current/A | ηele,maxa/% | Ufuelb/% | Fuel flow rate/(L•min–1) | Voltage/V | Power/W |
---|---|---|---|---|---|
10 | 53.57 | 87.10 | 0.08 | 0.771 | 7.71 |
20 | 52.92 | 87.10 | 0.16 | 0.761 | 15.23 |
30 | 50.47 | 87.10 | 0.24 | 0.726 | 21.78 |
Fuel utilization/% | 20 A | 30 A | |||||
---|---|---|---|---|---|---|---|
800 ℃ | 750 ℃ | 720 ℃ | 800 ℃ | 750 ℃ | 720 ℃ | ||
69.68 | 5 | 5 | 6 | 4 | 4 | 4 | |
77.42 | 8 | 15 | 23 | 5 | 5 | 7 | |
87.10 | 13 | 41 | 53 | 19 | 33 | 45 | |
99.54 | 38 | 61 | 73 | 45 | 62 | 63 |
Fuel utilization/% | 20 A | 30 A | |||||
---|---|---|---|---|---|---|---|
800 ℃ | 750 ℃ | 720 ℃ | 800 ℃ | 750 ℃ | 720 ℃ | ||
69.68 | 5 | 5 | 6 | 4 | 4 | 4 | |
77.42 | 8 | 15 | 23 | 5 | 5 | 7 | |
87.10 | 13 | 41 | 53 | 19 | 33 | 45 | |
99.54 | 38 | 61 | 73 | 45 | 62 | 63 |
No. | Temperature/℃ | E*a/V | Current/A | Ufuelb/% | Uc/V | Power/W | ηeled/% | Evaluation of this condition |
---|---|---|---|---|---|---|---|---|
Before degradation (1st day) | ||||||||
1 | 720 | 0.744 | 20 | 77.42 | 0.814 | 16.28 | 50.31 | U>E*, Higher power |
2 | 720 | 0.744 | 20 | 87.10 | 0.761 | 15.23 | 52.92 | U>E*, Higher efficiency |
3 | 720 | 0.744 | 30 | 87.10 | 0.726 | 21.78 | 50.47 | U<E*, not safe enough |
After degradation (7th day) | ||||||||
4 | 750 | 0.730 | 20 | 87.10 | 0.760 | 15.20 | 52.83 | U>E*, Better for stability |
5 | 800 | 0.706 | 20 | 77.42 | 0.813 | 16.27 | 50.26 | U>E*, Higher power |
6 | 800 | 0.706 | 20 | 87.10 | 0.774 | 15.48 | 53.81 | U>E*, Higher efficiency |
7 | 800 | 0.706 | 30 | 87.10 | 0.750 | 22.49 | 52.10 | U>E*, Higher power & efficiency |
No. | Temperature/℃ | E*a/V | Current/A | Ufuelb/% | Uc/V | Power/W | ηeled/% | Evaluation of this condition |
---|---|---|---|---|---|---|---|---|
Before degradation (1st day) | ||||||||
1 | 720 | 0.744 | 20 | 77.42 | 0.814 | 16.28 | 50.31 | U>E*, Higher power |
2 | 720 | 0.744 | 20 | 87.10 | 0.761 | 15.23 | 52.92 | U>E*, Higher efficiency |
3 | 720 | 0.744 | 30 | 87.10 | 0.726 | 21.78 | 50.47 | U<E*, not safe enough |
After degradation (7th day) | ||||||||
4 | 750 | 0.730 | 20 | 87.10 | 0.760 | 15.20 | 52.83 | U>E*, Better for stability |
5 | 800 | 0.706 | 20 | 77.42 | 0.813 | 16.27 | 50.26 | U>E*, Higher power |
6 | 800 | 0.706 | 20 | 87.10 | 0.774 | 15.48 | 53.81 | U>E*, Higher efficiency |
7 | 800 | 0.706 | 30 | 87.10 | 0.750 | 22.49 | 52.10 | U>E*, Higher power & efficiency |
Fuel utilization/% | Fuel flow rate of dry H2/(L•min–1) | ||
---|---|---|---|
10 A | 20 A | 30 A | |
63.34 | 0.11 | 0.22 | 0.33 |
69.68 | 0.10 | 0.20 | 0.30 |
77.42 | 0.09 | 0.18 | 0.27 |
87.10 | 0.08 | 0.16 | 0.24 |
99.54 | 0.07 | 0.14 | 0.21 |
Fuel utilization/% | Fuel flow rate of dry H2/(L•min–1) | ||
---|---|---|---|
10 A | 20 A | 30 A | |
63.34 | 0.11 | 0.22 | 0.33 |
69.68 | 0.10 | 0.20 | 0.30 |
77.42 | 0.09 | 0.18 | 0.27 |
87.10 | 0.08 | 0.16 | 0.24 |
99.54 | 0.07 | 0.14 | 0.21 |
[1] |
Nakao, T.; Inoue, S.; Uenoyama, S.; Takuwa, Y.; Suzuki, M. ECS Trans. 2019, 91, 43.
doi: 10.1149/09101.0043ecst |
[2] |
Suzuki, M.; Inoue, S.; Shigehisa, T. ECS Trans. 2021, 103, 25.
doi: 10.1149/10301.0025ecst |
[3] |
Ballard, A.; Domanski, T.; Rees, L.; Nobbs, C.; Lawrence, N.; Heffer, K.; Harman, J.; Evans, C.; Barnard, P.; Mukerjee, S.; Selby, M. ECS Trans. 2019, 91, 117.
doi: 10.1149/09101.0117ecst |
[4] |
Sumi, H.; Nakabayashi, S.; Kawada, T.; Uchiyama, Y.; Uchiyama, N.; Ichihara, K. ECS Trans. 2019, 91, 149.
doi: 10.1149/09101.0149ecst |
[5] |
Vora, S. D.; Jesionowski, G.; Williams, M. C. ECS Trans. 2019, 91, 27.
doi: 10.1149/09101.0027ecst |
[6] |
Santhanam, S.; Ullmer, D.; Wuillemin, Z.; Varkaraki, E.; Beetschen, C.; Antonetti, Y.; Ansar, A. ECS Trans. 2019, 91, 159.
doi: 10.1149/09101.0159ecst |
[7] |
Hara, D. ECS Trans. 2019, 91, 3.
doi: 10.1149/09101.0003ecst |
[8] |
Horita, T. ECS Trans. 2021, 103, 1023.
doi: 10.1149/10301.1023ecst |
[9] |
Mai, A.; Grolig, J. G.; Dold, M.; Vandercruysse, F.; Denzler, R.; Schindler, B.; Schuler, A. ECS Trans. 2019, 91, 63.
doi: 10.1149/09101.0063ecst |
[10] |
Noponen, M.; Torri, P.; Göös, J.; Puranen, J.; Kaar, H.; Pylypko, S.; Roostar, M.; Õunpuu, E. ECS Trans. 2019, 91, 91.
doi: 10.1149/09101.0091ecst |
[11] |
Vora, S.; Williams, M.; Jesionowski, G. ECS Trans. 2021, 103, 3.
doi: 10.1149/10301.0003ecst |
[12] |
Fu, C.; Yan, D.; Jia, L.; Pu, J.; Chi, B.; Li, J. J. Ceram. 2020, 41, 869.
|
[13] |
Futamura, S.; Tachikawa, Y.; Matsuda, J.; Lyth, S. M.; Shiratori, Y.; Taniguchi, S.; Sasaki, K. J. Electrochem. Soc. 2017, 164, F3055.
doi: 10.1149/2.0071710jes |
[14] |
Min, G.; Park, Y. J.; Hong, J. Energy Convers. Manage. 2020, 209, 112614.
doi: 10.1016/j.enconman.2020.112614 |
[15] |
Li, H.; Cui, T.; Han, M. ECS Trans. 2021, 103, 831.
doi: 10.1149/10301.0831ecst |
[16] |
Fang, Q.; Blum, L.; Peters, R.; Peksen, M.; Batfalsky, P.; Stolten, D. Int. J. Hydrogen Energy 2015, 40, 1128.
doi: 10.1016/j.ijhydene.2014.11.094 |
[17] |
Nehter, P. J. Power Sources 2007, 164, 252.
doi: 10.1016/j.jpowsour.2006.08.037 |
[18] |
Klotz, D.; Weber, A.; Ivers-Tiffée, E. Electrochim. Acta 2017, 227, 110.
doi: 10.1016/j.electacta.2016.12.148 |
[19] |
Brus, G.; Miyoshi, K.; Iwai, H.; Saito, M.; Yoshida, H. Int. J. Hydrogen Energy 2015, 40, 6927.
doi: 10.1016/j.ijhydene.2015.03.143 |
[20] |
Kawasaki, T.; Matsuda, J.; Tachikawa, Y.; Lyth, S. M.; Shiratori, Y.; Taniguchi, S.; Sasaki, K. Int. J. Hydrogen Energy 2019, 44, 9386.
doi: 10.1016/j.ijhydene.2019.02.136 |
[21] |
Feng, Y.; Ding, X.; Ma, Z.; Li, Y.; Zeng, F.; Zhou, J.; Wang, S. J. Ceram. 2021, 42, 360.
|
[22] |
Wang, Y.; Shi, W.; Li, H.; Han, M.; Sun, Z. ECS Trans. 2019, 91, 707.
doi: 10.1149/09101.0707ecst |
[23] |
Heo, Y. H.; Lee, J. W.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Park, C. O.; Shin, D. R. Int. J. Hydrogen Energy 2011, 36, 797.
doi: 10.1016/j.ijhydene.2010.10.038 |
[24] |
Lyu, Z.; Liu, S.; Wang, Y.; Li, H.; Liu, Z.; Sun, Z.; Sun, K.; Zhang, S.; Han, M. J. Power Sources 2021, 510, 230432.
doi: 10.1016/j.jpowsour.2021.230432 |
[25] |
Yang, B., Chen, Z., Qin, Z. Urban Gas 2019, 4.
|
[26] |
Lyu, Z.; Meng, H.; Zhu, J.; Han, M.; Sun, Z.; Xue, H.; Zhao, Y.; Zhang, F. Appl. Energy 2020, 270, 115220.
doi: 10.1016/j.apenergy.2020.115220 |
[27] |
Peters, R.; Deja, R.; Blum, L.; Pennanen, J.; Kiviaho, J.; Hakala, T. Int. J. Hydrogen Energy 2013, 38, 6809.
doi: 10.1016/j.ijhydene.2013.03.110 |
[28] |
Calise, F.; Dentice d’Accadia, M.; Palombo, A.; Vanoli, L. Energy 2006, 31, 3278.
doi: 10.1016/j.energy.2006.03.006 |
[29] |
Nakamura, K.; Ide, T.; Kawabata, Y.; Nakajima, T.; Dohkoh, T.; Tsuji, M.; Akabane, S.; Hatae, T. J. Electrochem. Soc. 2020, 167, 114516.
doi: 10.1149/1945-7111/aba791 |
[30] |
Ramos, T.; Søgaard, M.; Mogensen, M. B. J. Electrochem. Soc. 2014, 161, F434.
doi: 10.1149/2.045404jes |
[31] |
Lang, M.; Bohn, C.; Henke, M.; Schiller, G.; Willich, C.; Hauler, F. J. Electrochem. Soc. 2017, 164, F1460.
doi: 10.1149/2.1541713jes |
[32] |
Brus, G.; Iwai, H.; Sciazko, A.; Saito, M.; Yoshida, H.; Szmyd, J. S. J. Power Sources 2015, 288, 199.
doi: 10.1016/j.jpowsour.2015.04.092 |
[33] |
Sugihara, S.; Iwai, H. Int. J. Hydrogen Energy 2020, 45, 25227.
doi: 10.1016/j.ijhydene.2020.06.033 |
[34] |
Blum, L.; Fang, Q.; Groß-Barsnick, S. M.; de Haart, L. G. J. (Bert.; Malzbender, J.; Menzler, N. H.; Quadakkers, W. J. Int. J. Hydrogen Energy 2020, 45, 8955.
doi: 10.1016/j.ijhydene.2020.01.074 |
[35] |
Lyu, Z.; Han, M.; Sun, Z.; Sun, K. Acta Chim. Sinica 2021, 79, 763. (in Chinese)
doi: 10.6023/A21020065 |
(吕泽伟, 韩敏芳, 孙再洪, 孙凯华, 化学学报, 2021, 79, 763.)
doi: 10.6023/A21020065 |
|
[36] |
Wang, Y.; Lyu, Z.; Han, M.; Sun, Z.; Sun, K. ECS Trans. 2021, 103, 1261.
doi: 10.1149/10301.1261ecst |
[37] |
Cui, T.; Li, H.; Lyu, Z.; Wang, Y.; Han, M.; Sun, Z.; Sun, K. Acta Phys.-Chim. Sin. 2022, 38, 2011009. (in Chinese)
|
(崔同慧, 李航越, 吕泽伟, 王怡戈, 韩敏芳, 孙再洪, 孙凯华, 物理化学学报, 2022, 38, 2011009.)
|
[1] | Zewei Lyu, Minfang Han, Zaihong Sun, Kaihua Sun. Evolution of Electrochemical Characteristics of Solid Oxide Fuel Cells During Initial-Stage Operation [J]. Acta Chimica Sinica, 2021, 79(6): 763-770. |
[2] | Hu Yuhui, Wu Wenlin, Yu Liyang, Luo Kaijun, Xu Xiaopeng, Li Ying, Peng Qiang. Synthesis and Photovoltaic Properties of Perylene Diimide Based Small Molecular Acceptors with a Diketopyrrolopyrrole Core [J]. Acta Chimica Sinica, 2020, 78(11): 1246-1254. |
[3] | Chen Xinyu, Xie Junjie, Wang Wei, Yuan Huihui, Xu Di, Zhang Tao, He Yunlong, Shen Hujiang. Research Progress of Compositional Controlling Strategy to Perovskite for High Performance Solar Cells [J]. Acta Chim. Sinica, 2019, 77(1): 9-23. |
[4] | Guo Xudong, Niu Guangda, Wang Liduo. Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency [J]. Acta Chim. Sinica, 2015, 73(3): 211-218. |
[5] | ZHOU De-Feng*,1; GUO Wei; ZHU Jian-Xin; HAO Xian-Feng2; GE Zhi-Min; YE Jun-Feng; MENG Jian2. Effects of Pr Dopant on Grain Boundary and Electrical Properties of Ce5.2Sm0.8MoO15-δ [J]. Acta Chimica Sinica, 2007, 65(14): 1313-1317. |
[6] | XU Jia-Huan, HUANG Xi-Qiang, LÜ Zhe, ZHANG Yao-Hui, GE Xiao-Dong, SU Wen-Hui*,1,2,3. Synthesis and Properties of Pr1-xSrxAlO3-δ as Cathode ofSolid Oxide Fuel Cells [J]. Acta Chimica Sinica, 2006, 64(5): 449-452. |
[7] | ZHAO Hui, HUO Li-Hua, SUN Li-Ping, GAO Shan, YU Li-Jun, ZHAO Jing-Gui. Preparation and Electrochemical Properties of LSM-CBO Composite Cathodes for ITSOFC [J]. Acta Chimica Sinica, 2004, 62(20): 1993-1997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||