Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (10): 1436-1447.DOI: 10.6023/A21120593 Previous Articles     Next Articles

Special Issue: 中国科学院青年创新促进会合辑

Review

功能化医用聚氨酯弹性体制备及生物医用研究进展

张桢焱†,a,c, 刘琳†,a,c, 许东华a,c, 张若愚b,*(), 石恒冲a,c,*(), 栾世方a,c, 殷敬华a   

  1. a 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
    b 中科院宁波材料所所属慈溪生物医学工程研究所 医用植介入材料浙江省工程研究中心 宁波 315300
    c 中国科学技术大学 应用化学与工程学院 合肥 230026
  • 投稿日期:2021-12-28 发布日期:2022-10-13
  • 通讯作者: 张若愚, 石恒冲
  • 作者简介:

    张桢焱, 在读博士生. 2016年, 2019年分别获得北京化工大学工学学士和工学硕士学位. 2021年进入中国科学院长春应用化学研究所攻读博士学位. 主要研究方向为功能化聚氨酯合成与医用抗菌涂层构建.

    刘琳, 中国科学院长春应用化学研究所博士. 2021年于中国科学院长春应化所获理学博士学位, 2016年于吉林大学获理学学士学位. 主要研究方向为医用高分子材料表面功能化改性.

    张若愚, 中国科学院宁波材料技术与工程研究所研究员, 博士生导师. 2008年在中科院化学所获理学博士学位, 入选中科院青年创新促进会会员、宁波市领军拔尖人才. 主要研究方向为聚氨酯功能材料、聚氨酯介入类医疗器械.

    石恒冲, 中国科学院长春应用化学研究所研究员, 博士生导师. 2011年在中科院长春应化所获理学博士学位, 入选中科院青年创新促进会会员、优秀会员和“香江学者”计划. 主要研究方向为医用聚氨酯功能化及高性能化、医用高分子材料表界面.

    栾世方, 中国科学院长春应用化学研究所研究员, 博士生导师. 2006年在中科院长春应化所获理学博士学位. 国家重点研发计划首席科学家, 兼任中国生物材料学会常务理事等. 主要研究方向为医用高分子材料及器械.

    殷敬华, 中国科学院长春应用化学研究所研究员, 博士生导师. 作为第一完成人, 获国家科技进步二等奖、国家技术发明二等奖等. 主要研究方向为医用高分子材料及器械.

    庆祝中国科学院青年创新促进会十年华诞.
  • 基金资助:
    国家自然科学基金(51973221); 国家自然科学基金(51773218); 国家重点研发计划(2020YFC1106900); 工信部生物医用材料生产示范平台(TC190H3ZV/1); 中科院威高计划、宁波市重大科技攻关(2020Z086); 中科院威高计划、宁波市重大科技攻关(2021Z070); 山东省重大科技创新工程(2019JZZY011105)

Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers

Zhenyan Zhang†,a,c, Lin Liu†,a,c, Donghua Xua,c, Ruoyu Zhangb(), Hengchong Shia,c(), Shifang Luana,c, Jinghua Yina   

  1. a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
    b Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
    c College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
  • Received:2021-12-28 Published:2022-10-13
  • Contact: Ruoyu Zhang, Hengchong Shi
  • About author:
    Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
    These authors contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(51973221); National Natural Science Foundation of China(51773218); National Key Research and Development Program of China(2020YFC1106900); Production Demonstration Platform for Biomedical Materials of Ministry of Industry and Information Technology of China(TC190H3ZV/1); Chinese Academy of Sciences-Wego Group Hightech Research & Development Program, Ningbo Technological Innovation 2025(2020Z086); Chinese Academy of Sciences-Wego Group Hightech Research & Development Program, Ningbo Technological Innovation 2025(2021Z070); Major Science and Technology Innovation Project of Shandong Province(2019JZZY011105)

Thermoplastic polyurethane (TPU) elastomer is widely used in biomedical field because of its good processability, mechanical property and biocompatibility. Most TPUs are composed of macromolecular diols as soft segments, diisocyanate and chain extenders as hard segments, which provide the elasticity of the matrix and the framework rigidity of the chain network, respectively. The structural design of chain extender diol/ diamine and diisocyanate is the main method to construct functional TPUs. Researchers designed and prepared the functional monomers according to the specific clinical scene or usage requirements, and developed the corresponding medical TPUs. In this paper, the types and characteristics of macromolecular diols, diisocyanate and chain extenders are introduced. Their unique microphase separation structures are analyzed, and the relationship between the chemical/physical structure and the final performance is discussed. Then, the research progress and advanced applications of TPU in biomedicine at home and abroad are summarized. The applications of TPU as antibacterial, anticoagulant, hydrolytic and oxidation resistant, self-healing and degradable materials are emphasized. Finally, by summarizing and analyzing various standards of biomedical TPU and its device, the key problems of industrial application are put forward, and the future development direction of TPU is prospected.

Key words: polyurethane elastomer, functional modification, macromolecular diol, diisocyanate, biomedical materials