Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (5): 435-440.DOI: 10.6023/A23030099 Previous Articles Next Articles
Special Issue: 庆祝《化学学报》创刊90周年合辑
Communication
徐袁利a, 潘辉*,b(), 杨义*,a(), 左智伟*,b()
投稿日期:
2023-03-29
发布日期:
2023-05-09
作者简介:
基金资助:
Yuanli Xua, Hui Panb(), Yi Yanga(), Zhiwei Zuob()
Received:
2023-03-29
Published:
2023-05-09
Contact:
*E-mail: hvpj1102@163.com; yangyiyoung@163.com; zuozhw@sioc.ac.cn
About author:
Supported by:
Share
Yuanli Xu, Hui Pan, Yi Yang, Zhiwei Zuo. Selectively Aerobic Oxidation of Benzylic C—H Bonds Enabled by Dual Anthracene and Cerium Catalysis under Continuous-Flow Conditions★[J]. Acta Chimica Sinica, 2023, 81(5): 435-440.
Substratesa | Products | Resultsb |
---|---|---|
| | tR=1.8 minc 96% yield, 8.7 mmol/h |
| | tR=1.8 minc 94% yield, 8.5 mmol/h |
| | tR=1.8 minc 95% yield, 8.6 mmol/h |
| | tR=3.6 min 94% yield, 4.2 mmol/h |
| | tR=3.6 min 79% yield, 3.5 mmol/h |
| | tR=3.6 min 85% yield, 3.8 mmol/h |
| | tR=3.6 mind 86% yield, 7.7 mmol/h |
| | tR=1.8 minc 58% yield, 5.2 mmol/h |
| | tR=3.6 min 71% yield, 3.2 mmol/h |
| | tR=7.2 mine 84% yield, 1.9 mmol/h |
Substratesa | Products | Resultsb |
---|---|---|
| | tR=1.8 minc 96% yield, 8.7 mmol/h |
| | tR=1.8 minc 94% yield, 8.5 mmol/h |
| | tR=1.8 minc 95% yield, 8.6 mmol/h |
| | tR=3.6 min 94% yield, 4.2 mmol/h |
| | tR=3.6 min 79% yield, 3.5 mmol/h |
| | tR=3.6 min 85% yield, 3.8 mmol/h |
| | tR=3.6 mind 86% yield, 7.7 mmol/h |
| | tR=1.8 minc 58% yield, 5.2 mmol/h |
| | tR=3.6 min 71% yield, 3.2 mmol/h |
| | tR=7.2 mine 84% yield, 1.9 mmol/h |
[1] |
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2010, 40, 102.
doi: 10.1039/B913880N |
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
doi: 10.1002/anie.201200223 |
|
(c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r |
|
(d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449 |
|
(e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 |
|
(f) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
doi: 10.1021/acs.chemrev.6b00018 |
|
(g) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
doi: 10.1021/acs.chemrev.1c00383 |
|
(h) Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Chem. Rev. 2022, 122, 1543.
doi: 10.1021/acs.chemrev.1c00403 |
|
(i) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
doi: 10.1021/acs.chemrev.1c00311 |
|
(j) Murray, P. R. D.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna, B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E.; Shin, N. Y.; Koronkiewicz, B.; Qiu, G.; Knowles, R. R. Chem. Rev. 2022, 122, 2017.
doi: 10.1021/acs.chemrev.1c00374 |
|
(k) Gao, P.-P.; Xiao, W.-J.; Chen, J.-R. Chin. J. Org. Chem. 2022, 42, 3923. (in Chinese)
doi: 10.6023/cjoc202208044 |
|
(高盼盼, 肖文精, 陈加荣, 有机化学, 2022, 42, 3923.)
doi: 10.6023/cjoc202208044 |
|
(l) Han, Y.; Jiang, W.; Zhang, J.; Peng, J.; Chen, C. Chin. J. Org. Chem. 2022, 42, 266. (in Chinese)
doi: 10.6023/cjoc202104037 |
|
(韩阳, 姜为超, 张靖, 彭进松, 陈春霞, 有机化学, Chin. J. Org. Chem. 2022, 42, 266.)
|
|
(m) Wang, D.; Wang, J.; Ma, C.; Jiang, Y.; Yu, B. Chin. J. Org. Chem. 2022, 42, 4024. (in Chinese)
doi: 10.6023/cjoc202208039 |
|
(王丹凤, 汪瑾, 马春华, 姜玉钦, 於兵, 有机化学, 2022, 42, 4024.)
doi: 10.6023/cjoc202208039 |
|
[2] |
(a) Chen, M. S.; White, M. C. Science 2007, 318, 783.
doi: 10.1126/science.1148597 |
(b) McNeill, E.; Du Bois, J. Chem. Sci. 2012, 3, 1810.
doi: 10.1039/c2sc20118f |
|
(c) Moriyama, K.; Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414.
doi: 10.1021/ol300853z |
|
(d) Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014, 16, 1108.
doi: 10.1021/ol4037083 |
|
(e) Liu, J.; Fan, W.; Xiong, H.; Jiang, J.; Zhan, H. Chin. J. Org. Chem. 2021, 41, 4409. (in Chinese)
doi: 10.6023/cjoc202104028 |
|
(刘建奇, 范伟伟, 熊航行, 江京耘, 詹红菊, 有机化学, 2021, 41, 4409.)
doi: 10.6023/cjoc202104028 |
|
(f) Wang, C.; Yao, Y.; Xie, J.; Wang, J.; Wang, F.; Zhang, J.; Tang, L. Chin. J. Org. Chem. 2021, 41, 370. (in Chinese)
doi: 10.6023/cjoc202002011 |
|
(王聪, 姚瑶瑶, 谢珺, 王建塔, 王飞清, 张吉泉, 汤磊, 有机化学, 2021, 41, 370.)
doi: 10.6023/cjoc202002011 |
|
[3] |
(a) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
doi: 10.1021/acs.accounts.7b00108 pmid: 30934144 |
(b) Zhang, Y.; Schilling, W.; Das, S. ChemSusChem 2019, 12, 2898.
doi: 10.1002/cssc.201900414 pmid: 30934144 |
|
(c) Forchetta, M.; Valentini, F.; Conte, V.; Galloni, P.; Sabuzi, F. Catalysts 2023, 13, 220.
doi: 10.3390/catal13020220 pmid: 30934144 |
|
(d) Jin, W.; Liu, C. Chin. J. Org. Chem. 2021, 41, 2148. (in Chinese)
pmid: 30934144 |
|
(金伟伟, 刘晨江, 有机化学, 2021, 41, 2148.)
doi: 10.6023/cjoc202100038 pmid: 30934144 |
|
[4] |
(a) Kuang, Y.; Cao, H.; Tang, H.; Chew, J.; Chen, W.; Shi, X.; Wu, J. Chem. Sci. 2020, 11, 8912.
doi: 10.1039/D0SC02661A |
(b) Cao, H.; Kuang, Y.; Shi, X.; Wong, K. L.; Tan, B. B.; Kwan, J. M. C.; Liu, X.; Wu, J. Nat. Commun. 2020, 11, 1956.
doi: 10.1038/s41467-020-15878-6 |
|
(c) Liu, J.; Zhao, W.; Lu, L.; Liu, Y.; Cheng, Y.; Xiao, W. Green Synth. Catal. 2021, 2, 389.
|
|
[5] |
Hu, D.; Jiang, X. Green Chem. 2022, 24, 124.
doi: 10.1039/D1GC04042A |
[6] |
(a) Deng, H.-P.; Zhou, Q.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 12661.
doi: 10.1002/anie.201804844 |
(b) Fan, X.; Rong, J.; Wu, H.; Zhou, Q.; Deng, H.; Tan, J. D.; Xue, C.; Wu, L.; Tao, H.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 8514.
doi: 10.1002/anie.v57.28 |
|
(c) Cao, H.; Kong, D.; Yang, L.-C.; Chanmungkalakul, S.; Liu, T.; Piper, J. L.; Peng, Z.; Gao, L.; Liu, X.; Hong, X.; Wu, J. Nat. Synth. 2022, 1, 794.
doi: 10.1038/s44160-022-00125-1 |
|
[7] |
(a) Zhang, W.; Gacs, J.; Arends, I. W. C. E.; Hollmann, F. ChemCatChem 2017, 9, 3821.
doi: 10.1002/cctc.v9.20 |
(b) Jiang, D.; Zhang, Q.; Yang, L.; Deng, Y.; Yang, B.; Liu, Y.; Zhang, C.; Fu, Z. Renew. Energy 2021, 174, 928.
doi: 10.1016/j.renene.2021.04.100 |
|
[8] |
(a) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647.
pmid: 11073666 |
(b) Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzuki, N.; Fukuzumi, S. Chem. Commun. 2010, 46, 601.
doi: 10.1039/B920606J pmid: 11073666 |
|
(c) Lechner, R.; Kümmel, S.; König, B. Photochem. Photobiol. Sci. 2010, 9, 1367.
doi: 10.1039/c0pp00202j pmid: 11073666 |
|
[9] |
(a) Mühldorf, B.; Wolf, R. Chem. Commun. 2015, 51, 8425.
doi: 10.1039/C5CC00178A |
(b) Mühldorf, B.; Wolf, R. Angew. Chem., Int. Ed. 2016, 55, 427.
doi: 10.1002/anie.201507170 |
|
[10] |
Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Chem. Rev. 2016, 116, 10276.
doi: 10.1021/acs.chemrev.5b00707 pmid: 26935706 |
[11] |
Pieber, B.; Kappe, C. O. In Organometallic Flow Chemistry, Ed.: Noël, T., Springer International Publishing, Cham, 2016, pp. 97-136.
|
[12] |
(a) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
doi: 10.1021/acs.chemrev.7b00183 pmid: 28570059 |
(b) Fan, X.; Xiao, P.; Jiao, Z.; Yang, T.; Dai, X.; Xu, W.; Tan, J. D.; Cui, G.; Su, H.; Fang, W.; Wu, J. Angew. Chem., Int. Ed. 2019, 58, 12580.
doi: 10.1002/anie.v58.36 pmid: 28570059 |
|
(c) Lei, Z.; Ang, H. T.; Wu, J. Org. Process Res. Dev. 2023, DOI: 10.1021/acs.oprd.2c00374.
pmid: 28570059 |
|
(d) Liu, D.; Zhu, Y.; Gu, S.; Chen, F. Chin. J. Org. Chem. 2021, 41, 1002. (in Chinese)
doi: 10.6023/cjoc202007051 pmid: 28570059 |
|
(刘玎, 朱园园, 古双喜, 陈芬儿, 有机化学, 2021, 41, 1002.)
doi: 10.6023/cjoc202007051 pmid: 28570059 |
|
[13] |
Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Chem. Rev. 2022, 122, 2752.
doi: 10.1021/acs.chemrev.1c00332 |
[14] |
Laudadio, G.; Govaerts, S.; Wang, Y.; Ravelli, D.; Koolman, H. F.; Fagnoni, M.; Djuric, S. W.; Noël, T. Angew. Chem., Int. Ed. 2018, 57, 4078.
doi: 10.1002/anie.201800818 |
[15] |
Lesieur, M.; Genicot, C.; Pasau, P. Org. Lett. 2018, 20, 1987.
doi: 10.1021/acs.orglett.8b00540 |
[16] |
Morrison, G.; Bannon, R.; Wharry, S.; Moody, T. S.; Mase, N.; Hattori, M.; Manyar, H.; Smyth, M. Tetrahedron Lett. 2022, 90, 153613.
doi: 10.1016/j.tetlet.2021.153613 |
[17] |
Li, C.; Xu, R.; Song, Q.; Mao, Z.; Li, J.; Yang, H.; Chen, J. Tetrahedron Lett. 2022, 98, 153818.
doi: 10.1016/j.tetlet.2022.153818 |
[18] |
Hu, A.; Guo, J.-J.; Pan, H.; Zuo, Z. Science 2018, 361, 668.
doi: 10.1126/science.aat9750 |
[19] |
Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 13580.
doi: 10.1021/jacs.8b08781 |
[20] |
Du, J.; Yang, X.; Wang, X.; An, Q.; He, X.; Pan, H.; Zuo, Z. Angew. Chem., Int. Ed. 2021, 60, 5370.
doi: 10.1002/anie.v60.10 |
[21] |
An, Q.; Wang, Z.; Chen, Y.; Wang, X.; Zhang, K.; Pan, H.; Liu, W.; Zuo, Z. J. Am. Chem. Soc. 2020, 142, 6216.
doi: 10.1021/jacs.0c00212 |
[22] |
An, Q.; Xing, Y.-Y.; Pu, R.; Jia, M.; Chen, Y.; Hu, A.; Zhang, S.-Q.; Yu, N.; Du, J.; Zhang, Y.; Chen, J.; Liu, W.; Hong, X.; Zuo, Z. J. Am. Chem. Soc. 2023, 145, 359.
doi: 10.1021/jacs.2c10126 |
[23] |
Wang, Y.-H.; Yang, Q.; Walsh, P. J.; Schelter, E. J. Org. Chem. Front. 2022, 9, 2612.
doi: 10.1039/D2QO00362G |
[24] |
(a) Jin, Y.; Zhang, Q.; Wang, L.; Wang, X.; Meng, C.; Duan, C. Green Chem. 2021, 23, 6984.
doi: 10.1039/D1GC01563J |
(b) Jin, Y.; Wang, L.; Zhang, Q.; Zhang, Y.; Liao, Q.; Duan, C. Green Chem. 2021, 23, 9406.
doi: 10.1039/D1GC03388C |
|
[25] |
Treacy, S. M.; Rovis, T. J. Am. Chem. Soc. 2021, 143, 2729.
doi: 10.1021/jacs.1c00687 pmid: 33576606 |
[26] |
Schoof, S.; Güsten, H.; Von Sonntag, C. Ber. Bunsenges. Phys. Chem. 1978, 82, 1068.
doi: 10.1002/bbpc.v82:10 |
[27] |
Dixon, B. G.; Schuster, G. B. J. Am. Chem. Soc. 1981, 103, 3068.
doi: 10.1021/ja00401a026 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||