Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (11): 1633-1641.DOI: 10.6023/A23050212 Previous Articles Next Articles
Review
赵政嘉a,b, 刘康b, 郭燕b, 于吉攀b,*(), 石伟群a,b,*()
投稿日期:
2023-05-07
发布日期:
2023-07-17
作者简介:
赵政嘉, 2019年6月毕业于辽宁师范大学化学化工学院, 获理学学士学位; 2022年获辽宁师范大学有机化学专业硕士学位; 2022年9月至今为南华大学和中国科学院高能物理研究所联合培养博士研究生. |
刘康, 2016年6月毕业于湖北大学化学化工学院, 获理学学士学位; 2021年12月毕业于中国科学院高能物理研究所, 获理学博士学位; 2022年1月至今于中国科学院高能物理研究所进行博士后研究. 目前主要研究方向为低价锕系化学. |
郭燕, 博士, 讲师. 2008年获宁夏大学学士学位; 2012年获宁夏大学硕士学位; 2020年获西北大学博士学位; 2020年9月加入宁夏大学化学化工学院从事教学科研工作; 2022年2月至今在中国科学院高能物理研究所从事博士后研究. 目前主要研究方向为低价金属配合物的合成及磁性研究. |
于吉攀, 副研究员. 2008年获江苏师范大学学士学位; 2011年获南开大学硕士学位; 2014年获清华大学博士学位; 2014年7月至2016年7月于清华大学化学系进行博士后研究; 2016年7月加入中国科学院高能物理研究所核能放射化学实验室; 目前主要研究方向为锕系元素化学. |
石伟群, 研究员, 国家杰出青年科学基金获得者, 长期致力于核燃料循环化学与锕系元素化学相关基础研究, 在J. Am. Chem. Soc.、Angew. Chem.、Chem、CCS Chem.、Nat. Commun.、Adv. Mater.、Environ. Sci. Technol.等国际知名期刊发表SCI论文300余篇, 成果被国内外同行广泛关注和引用, 文章总引1万余次, H因子55 (Google Scholar). 分别担任期刊《Chinese Chemical Letters》、《Journal of Nuclear Fuel Cycle and Waste Technology》和《Journal of Nuclear Science and Technology》的编委与国际顾问编委, 中文期刊《核化学与放射化学》编委. 现为中国化学会核化学与放射化学专业委员会委员、中国核学会锕系物理与化学分会副理事长、中国有色金属学会熔盐化学与技术专业委员会副主任委员及中国核学会核化工分会理事兼副秘书长. |
基金资助:
Zhengjia Zhaoa,b, Kang Liub, Yan Guob, Jipan Yub(), Weiqun Shia,b()
Received:
2023-05-07
Published:
2023-07-17
Contact:
*E-mail: Supported by:
Share
Zhengjia Zhao, Kang Liu, Yan Guo, Jipan Yu, Weiqun Shi. Research Progress of Transuranic Organometallic Chemistry[J]. Acta Chimica Sinica, 2023, 81(11): 1633-1641.
[1] |
Fortier S.; Melot B. C.; Wu G.; Hayton T. W. J. Am. Chem. Soc. 2009, 131, 15512.
doi: 10.1021/ja906516e pmid: 19799380 |
[2] |
Seaman L. A.; Walensky J. R.; Wu G.; Hayton T. W. Inorg. Chem. 2013, 52, 3556.
doi: 10.1021/ic300867m pmid: 22716022 |
[3] |
Fortier S.; Walensky J. R.; Wu G.; Hayton T. W. J. Am. Chem. Soc. 2011, 133, 11732.
doi: 10.1021/ja204151v pmid: 21696157 |
[4] |
Seaman L. A.; Pedrick E. A.; Tsuchiya T.; Wu G.; Jakubikova E.; Hayton T. W. Angew. Chem., Int. Ed. 2013, 52, 10589.
doi: 10.1002/anie.v52.40 |
[5] |
Wang P.; Douair I.; Zhao Y.; Wang S.; Zhu J.; Maron L.; Zhu C. Angew. Chem., Int. Ed. 2021, 60, 473.
doi: 10.1002/anie.v60.1 |
[6] |
Fang W.; Douair I.; Hauser A.; Li K.; Zhao Y.; Roesky P. W.; Wang S.; Maron L.; Zhu C. CCS Chem. 2021, 3, 3268.
|
[7] |
Sun X.; Gong X.; Xie Z.; Zhu C. Chin. J. Chem. 2022, 40, 2047.
doi: 10.1002/cjoc.v40.17 |
[8] |
Feng G.; Zhang M.; Shao D.; Wang X.; Wang S.; Maron L.; Zhu C. Nat. Chem. 2019, 11, 248.
doi: 10.1038/s41557-018-0195-4 |
[9] |
Du J.; Alvarez-Lamsfus C.; Wildman E. P.; Wooles A. J.; Maron L.; Liddle S. T. Nat. Commun. 2019, 10, 4203.
doi: 10.1038/s41467-019-12206-5 |
[10] |
Staun S. L.; Sergentu D.C.; Wu G.; Autschbach J.; Hayton T. W. Chem. Sci. 2019, 10, 6431.
doi: 10.1039/C9SC01960J |
[11] |
Yu J.; Liu K.; Wu Q.; Li B.; Kong X.; Hu K.; Mei L.; Yuan L.; Chai Z.; Shi W. Chin. J. Chem. 2021, 39, 2125.
doi: 10.1002/cjoc.v39.8 |
[12] |
King D. M.; Tuna F.; McInnes E. J. L.; McMaster J.; Lewis W.; Blake A. J.; Liddle S. T. Science 2012, 337, 717.
doi: 10.1126/science.1223488 |
[13] |
Arnold P. L.; Dutkiewicz M. S.; Walter O. Chem. Rev. 2017, 117, 11460.
doi: 10.1021/acs.chemrev.7b00192 pmid: 28853564 |
[14] |
Dutkiewicz M. S.; Apostolidis C.; Walter O.; Arnold P. L. Chem. Sci. 2017, 8, 2553.
doi: 10.1039/c7sc00034k pmid: 28553487 |
[15] |
Kaltsoyannis N. Chem.-Eur. J. 2018, 24, 2815.
doi: 10.1002/chem.201704445 pmid: 29045764 |
[16] |
Walter O. Chem.-Eur. J. 2019, 25, 2927.
doi: 10.1002/chem.201803413 pmid: 30157303 |
[17] |
Goodwin C. A. P.; Su J.; Stevens L. M.; White F. D.; Anderson N. H.; Auxier J. D.; Albrecht-Schönzart T. E.; Batista E. R.; Briscoe S. F.; Cross J. N.; Evans W. J.; Gaiser A. N.; Gaunt A. J.; James M. R.; Janicke M. T.; Jenkins T. F.; Jones Z. R.; Kozimor S. A.; Scott B. L.; Sperling J. M.; Wedal J. C.; Windorff C. J.; Yang P.; Ziller J. W. Nature 2021, 599, 421.
doi: 10.1038/s41586-021-04027-8 |
[18] |
Baumgärtner F.; Fischer E. O.; Laubereau P. Naturwissenschaften 1965, 52, 560.
|
[19] |
Fischer E. O.; Laubereau P.; Baumgärtner F.; Kanellakopulos B. J. Organomet. Chem. 1966, 5, 583.
doi: 10.1016/S0022-328X(00)85165-7 |
[20] |
Baumgärtner F.; Fischer E. O.; Kanellakopulos B.; Laubereau P. Angew. Chem., Int. Ed. 1968, 7, 634.
|
[21] |
Brown J. L.; Batista E. R.; Boncella J. M.; Gaunt A. J.; Reilly S. D.; Scott B. L.; Tomson N. C. J. Am. Chem. Soc. 2015, 137, 9583.
doi: 10.1021/jacs.5b06667 |
[22] |
Su J.; Windorff C. J.; Batista E. R.; Evans W. J.; Gaunt A. J.; Janicke M. T.; Kozimor S. A.; Scott B. L.; Woen D. H.; Yang P. J. Am. Chem. Soc. 2018, 140, 7425.
doi: 10.1021/jacs.8b03907 |
[23] |
Brewster J. T.; Mangel D. N.; Gaunt A. J.; Saunders D. P.; Zafar H.; Lynch V. M.; Boreen M. A.; Garner M. E.; Goodwin C. A. P.; Settineri N. S.; Arnold J.; Sessler J. L. J. Am. Chem. Soc. 2019, 141, 17867.
doi: 10.1021/jacs.9b09123 pmid: 31609114 |
[24] |
Brown J. L.; Gaunt A. J.; King D. M.; Liddle S. T.; Reilly S. D.; Scott B. L.; Wooles A. J. Chem. Commun. 2016, 52, 5428.
doi: 10.1039/C6CC01656A |
[25] |
Dutkiewicz M. S.; Goodwin C. A. P.; Perfetti M.; Gaunt A. J.; Griveau J. C.; Colineau E.; Kovacs A.; Wooles A. J.; Caciuffo R.; Walter O.; Liddle S. T. Nat. Chem. 2022, 14, 342.
doi: 10.1038/s41557-021-00858-0 pmid: 35145247 |
[26] |
Pyykkö P. J. Phys. Chem. A 2015, 119, 2326.
doi: 10.1021/jp5065819 pmid: 25162610 |
[27] |
Dutkiewicz M. S.; Farnaby J. H.; Apostolidis C.; Colineau E.; Walter O.; Magnani N.; Gardiner M. G.; Love J. B.; Kaltsoyannis N.; Caciuffo R.; Arnold P. L. Nat. Chem. 2016, 8, 797.
doi: 10.1038/nchem.2520 pmid: 27442286 |
[28] |
Arnold P. L.; Dutkiewicz M. S.; Zegke M.; Walter O.; Apostolidis C.; Hollis E.; Pecharman A. F.; Magnani N.; Griveau J. C.; Colineau E.; Caciuffo R.; Zhang X.; Schreckenbach G.; Love J. B. Angew. Chem., Int. Ed. 2016, 55, 12797.
doi: 10.1002/anie.v55.41 |
[29] |
Myers A. J.; Tarlton M. L.; Kelley S. P.; Lukens W. W.; Walensky J. R. Angew. Chem., Int. Ed. 2019, 58, 14891.
doi: 10.1002/anie.v58.42 |
[30] |
Dutkiewicz M. S.; Apostolidis C.; Walter O.; Arnold P. L. Chem. Sci. 2017, 8, 2553.
doi: 10.1039/c7sc00034k pmid: 28553487 |
[31] |
Fichter S.; Kaufmann S.; Kaden P.; Brunner T. S.; Stumpf T.; Roesky P. W.; März J. Chem.-Eur. J. 2020, 26, 8867.
doi: 10.1002/chem.v26.41 |
[32] |
Apostolidis C.; Kovacs A.; Walter O.; Colineau E.; Griveau J. C.; Morgenstern A.; Rebizant J.; Caciuffo R.; Panak P. J.; Rabung T.; Schimmelpfennig B.; Perfetti M. J. Chem.-Eur. J. 2020, 26, 11293.
doi: 10.1002/chem.v26.49 |
[33] |
Trofimenko S. Chem. Rev. 1993, 93, 943.
doi: 10.1021/cr00019a006 |
[34] |
Trofimenko S. Skorpionates: The Coordination Chemistry of Pyrazolylborate Ligands, World Scientific Publishing, London, 1999.
|
[35] |
Marques N.; Sella A.; Takats J. Chem. Rev. 2002, 102, 2137.
pmid: 12059264 |
[36] |
Pettinari C. Scorpionates II: Chelating Borate Ligands, Imperial College Press, London, 2008.
|
[37] |
Staun S. L.; Stevens L. M.; Smiles D. E.; Goodwin C. A. P.; Billow B. S.; Scott B. L.; Wu G.; Tondreau A. M.; Gaunt A. J.; Hayton T. W. Inorg. Chem. 2021, 60, 2740.
doi: 10.1021/acs.inorgchem.0c03616 |
[38] |
Goodwin C. A. P.; Janicke M. T.; Scott B. T.; Gaunt A. J. J. Am. Chem. Soc. 2021, 143, 20680
doi: 10.1021/jacs.1c07967 pmid: 34854294 |
[39] |
Shephard J. J.; Berryman V. E. J.; Ochiai T.; Walter O.; Price A. N.; Warren M. R.; Arnold P. L.; Kaltsoyannis N.; Parsons S. Nat. Chem. 2022, 13, 5923.
|
[40] |
Seaborg G. T. The plutonium story, Lawrence Berkeley Laboratory, University of California, LBL-13492.
|
[41] |
Baumgärtner F.; Fischer E. O.; Kanellakopulos B.; Laubereau P. Angew. Chem., Int. Ed. 1965, 4, 878.
|
[42] |
Bagnall K. W.; Plews M. J.; Brown D. J. Organomet. Chem. 1982, 224, 263.
doi: 10.1016/S0022-328X(00)85838-6 |
[43] |
Bagnall K. W.; Plews M. J.; Brown D.; Fischer R. D.; Klhne E.; Landgraf G. W.; Sienel G. R. Dalton Trans. 1982, 1999.
|
[44] |
Apostolidis C.; Dutkiewicz M. S.; Kovacs A.; Walter O. Chem.-Eur. J. 2018, 24, 2841.
doi: 10.1002/chem.201704845 pmid: 29193373 |
[45] |
Eisenberg D. C.; Streitwieser A.; Kot W. K. Inorg. Chem. 1990, 29, 10.
doi: 10.1021/ic00326a004 |
[46] |
Streitwieser A. Jr.; Dempf D.; La Mar G. N.; Karraker D. G. J. Am. Chem. Soc. 1971, 93, 7343.
doi: 10.1021/ja00755a051 |
[47] |
Karraker D. G. Inorg. Chem. 1973, 12, 1105.
doi: 10.1021/ic50123a025 |
[48] |
Solar J. P.; Burghard H. P. G.; Banks R. H.; Streitwieser Jr. A.; Brown D. Inorg. Chem. 1980, 19, 2186.
doi: 10.1021/ic50209a075 |
[49] |
Apostolidis C.; Walter O.; Vogt J.; Liebing P.; Maron L.; Edelmann F. T. Angew. Chem., Int. Ed. 2017, 56, 5066.
doi: 10.1002/anie.v56.18 |
[50] |
(a) Windorff C. J.; Chen G. P.; Cross J. N.; Evans W. J.; Furche F.; Gaunt A. J.; Janicke M. T.; Kozimor S. A.; Scott B. L. J. Am. Chem. Soc. 2017, 139, 3970.
doi: 10.1021/jacs.7b00706 pmid: 28235179 |
(b) Seaborg G. T.; McMillan E. M.; Kennedy J. W.; Wahl A. C. Phys. Rev. 1946, 69, 366.
pmid: 28235179 |
|
(c)The Chemistry of the Actinide and Transactinide Elements, 3rd ed., Eds.: Morss, L. R.; Edelstein, N. M.; Fuger, J.; Katz, J. J., Springer, Dordrecht, The Netherlands, 2006.
pmid: 28235179 |
|
[51] |
Langeslay R. R.; Fieser M. E.; Ziller J. W.; Furche F.; Evans W. J. Chem. Sci. 2015, 6, 517.
doi: 10.1039/c4sc03033h pmid: 29560172 |
[52] |
Magnani N.; Colineau E.; Griveau J. C.; Apostolidis C.; Walter O.; Caciuffo R. Chem. Commun. 2014, 50, 8171.
doi: 10.1039/c4cc03400g |
[53] |
Windorff C. J.; Sperling J. M.; Albrecht-Schonzart T. E.; Bai Z.; Evans W. J.; Gaiser A. N.; Gaunt A. J.; Goodwin C. A. P.; Hobart D. E.; Huffman Z. K.; Huh D. N.; Klamm B. E.; Poe T. N.; Warzecha E. Inorg. Chem. 2020, 59, 13301.
doi: 10.1021/acs.inorgchem.0c01671 pmid: 32910649 |
[54] |
Street Jr. K.; Ghiorso A.; Seaborg G. T. Phys. Rev. 1950, 79, 530.
doi: 10.1103/PhysRev.79.530 |
[55] |
Goodwin C. A. P.; Su J.; Albrecht-Schmitt T. E.; Blake A. V.; Batista E. R.; Daly S. R.; Dehnen S.; Evans W. J.; Gaunt A. J.; Kozimor S. A.; Lichtenberger N.; Scott B. L.; Yang P. Angew. Chem., Int. Ed. 2019, 58, 11695.
doi: 10.1002/anie.v58.34 |
[56] |
Goodwin C. A. P.; Schlimgen A. W.; Albrecht-Schonzart T. E.; Batista E. R.; Gaunt A. J.; Yang P. Angew. Chem., Int. Ed. 2021, 60, 9459.
doi: 10.1002/anie.v60.17 |
[57] |
Long B. N.; Beltrán-Leiva M. J.; Celis-Barros C. Nat. Commun. 2022, 13, 201.
doi: 10.1038/s41467-021-27821-4 |
[58] |
Cross J. N.; Macor J. A.; Bertke J. A.; Ferrier M. G.; Girolami G. S.; Kozimor S. A.; Maassen J. R.; Scott B. L.; Shuh D. K.; Stein B. W.; Stieber S. C. Angew. Chem., Int. Ed. 2016, 55, 12755.
doi: 10.1002/anie.v55.41 |
[59] |
Sperling J. M.; Warzecha E. J.; Celis-Barros C.; Sergentu D. C.; Wang X.; Klamm B. E.; Windorff C. J.; Gaiser A. N.; White F. D.; Beery D. A.; Chemey A. T.; Whitefoot M. A.; Long B. N.; Hanson K.; Kogerler P.; Speldrich M.; Zurek E.; Autschbach J.; Albrecht-Schonzart T. E. Nature 2020, 583, 396.
doi: 10.1038/s41586-020-2479-2 |
[60] |
Morss L. R.; Edelstein N. M.; Fuger J. The Chemistry of the Actinide and Transactinide Elements, 4th ed., Vols 1-6, 2011.
|
[61] |
Kelley M. P.; Popov I. A.; Jung J.; Batista E. R.; Yang P. Nat. Commun. 2020, 11, 1558.
doi: 10.1038/s41467-020-15197-w |
[62] |
Kaltsoyannis N. Chem.-Eur. J. 2018, 24, 2815.
doi: 10.1002/chem.201704445 pmid: 29045764 |
[63] |
Wu Q. Y.; Lan J. H.; Wang C. Z.; Cheng Z. P.; Chai Z. F.; Gibson J. K.; Shi W. Q. Dalton Trans. 2016, 45, 3102.
doi: 10.1039/c5dt04540a pmid: 26777518 |
[64] |
Lukens W. W.; Speldrich M.; Yang P.; Duignan T. J.; Autschbach J.; Kçgerler P. Dalton Trans. 2016, 45, 11508.
doi: 10.1039/c6dt00634e pmid: 27349178 |
[65] |
Berryman V.; Shephard J. J.; Ochiai T. Phys. Chem. Chem. Phys. 2020, 22, 16804.
doi: 10.1039/D0CP02947E |
[1] | Kai Zhang, Xiaojun Wu. Room-Temperature Ferromagnetism in Two-Dimensional Janus Titanium Chalcogenides★ [J]. Acta Chimica Sinica, 2023, 81(9): 1142-1147. |
[2] | Xuefeng Liang, Jian Jing, Xin Feng, Yongze Zhao, Xinyuan Tang, Yan He, Lisheng Zhang, Huifang Li. Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework [J]. Acta Chimica Sinica, 2023, 81(7): 717-724. |
[3] | Bing Zheng, Zhe Wang, Jing He, Jiao Zhang, Wenbo Qi, Mengyuan Zhang, Haitao Yu. Structure and Work Function of Alkaline (Earth) Metal-Bilayer α-Borophene Nanocomposite: A Theoretical Study [J]. Acta Chimica Sinica, 2023, 81(10): 1357-1370. |
[4] | Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As) [J]. Acta Chimica Sinica, 2022, 80(4): 510-516. |
[5] | Kang Liu, Bin Li, Jipan Yu, Weiqun Shi. Carbone Derivatives of Group 14: A Class of Important Reactive Intermediates [J]. Acta Chimica Sinica, 2022, 80(3): 373-385. |
[6] | Deng Yingyi, Qian Yinyin, Xie Ying, Zhang Lei, Zheng Bing, Lou Yuanqing, Yu Haitao. Effect of Li Adsorption on Work Function Modulation of Bilayer α-Borophene: A Theoretical Study [J]. Acta Chimica Sinica, 2020, 78(4): 344-354. |
[7] | Yang Zhice, Tian Jianan, Cai Hongxue, Li Li, Pan Qingjiang. Theoretical Probe for Tris(aryloxide)arene Complexed Low-valent Actinide Ions and Their Structural/Redox Properties [J]. Acta Chimica Sinica, 2020, 78(10): 1096-1101. |
[8] | Chen Fangyuan, Qu Ning, Wu Qunyan, Zhang Hongxing, Shi Weiqun, Pan Qingjiang. Structures and Uranium-Uranium Multiple Bond of Binuclear Divalent Uranium Complex of Pyrrolic Schiff-base Macrocycle: a Relativistic DFT Probe [J]. Acta Chim. Sinica, 2017, 75(5): 457-463. |
[9] | Li Lei, Jia Guixiao, Wang Xiaoxia, Wu Tongwei, Song Xiwen, An Shengli. [1+1] and [2+1] Additions on a (5,5) Single-Walled Carbon Nanotube with V1~V4 Vacancies Based on Defect Curvature: A First Principles Study [J]. Acta Chim. Sinica, 2017, 75(3): 284-292. |
[10] | Zhao Siwei, Zhong Yuxi, Guo Yuanru, Zhang Hongxing, Pan Qingjiang. A Relativistic DFT Study of Mixed Oxo-Imido Uranium Complexes of Polypyrrolic Macrocycle: Structure, Vibrational Spectrum and Oxo/Imido Exchange Reaction [J]. Acta Chim. Sinica, 2016, 74(8): 683-688. |
[11] | Wu Qisheng, Wang Zilu, Wang Jinlan. Strain Engineered Modulation on Graphene Doped with Boron, Nitrogen, Aluminum, Silicon and Phosphorus [J]. Acta Chim. Sinica, 2014, 72(12): 1233-1237. |
[12] | Sun Xiaoli, Li Jilai, Huang Xuri, Sun Chiachung. A Theoretical Study of the Reaction of Fe+ with CH3X (X=Cl, Br, I) [J]. Acta Chimica Sinica, 2013, 71(05): 749-754. |
[13] | Huang Xiao, Tan Ying, Xu Xuan, Xu Zhiguang. Theoretical Studies on Structures of Heterometal String Complexes [CuCuM(npa)4Cl]+ (M=Pt, Pd, Ni) under the Electric Field [J]. Acta Chimica Sinica, 2012, 70(18): 1979-1986. |
[14] | Qiu Yixiang, Wang Shuguang. Theoretical Investigations on Tris(pentamethylcyclopentadienyl) Rare Earth Metal Complexes (C5Me5)3Ln (Ln=Sc, Y, La) [J]. Acta Chimica Sinica, 2012, 70(18): 1930-1938. |
[15] | Wang Jianfeng, Jia Jianfeng, Ma Lijuan, Wu Haishun. Structure and Stability of TiBn (n=1—12) Clusters: An ab initio Investigation [J]. Acta Chimica Sinica, 2012, 70(15): 1643-1649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||