Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (5): 527-540.DOI: 10.6023/A24010038 Previous Articles     Next Articles

Review

煤矸石改性方法及其资源环境利用研究进展

张华林a,b,c, 赵梦飞a,b,c, 江晓亮b, 田少静b, 滕泽栋a,e, 李庭刚a,b,c,d,e,*()   

  1. a 中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室 中国科学院绿色过程制造创新研究院 战略金属资源绿色循环利用国家工程研究中心 北京市过程污染控制工程技术研究中心 北京 100190
    b 中国科学院赣江创新研究院 中国科学院稀土重点实验室 江西省稀土清洁生产重点实验室 江西赣州 341003
    c 江西理工大学冶金工程学院 江西赣州 341099
    d 生物药制备与递送重点实验室(中国科学院) 生化工程国家重点实验室 北京 100190
    e 中国科学院大学 北京 100049
  • 投稿日期:2024-01-29 发布日期:2024-04-02
  • 作者简介:

    张华林, 2022年江西理工大学与中国科学院赣江创新研究院联合培养在读博士研究生, 主要从事方向为生态修复与改良.

    赵梦飞, 2021年江西理工大学与中国科学院赣江创新研究院联合培养在读博士研究生, 主要从事方向为稀土生物浸出.

    江晓亮, 中国科学院赣江创新研究院助理研究员, 主要从事矿山土壤改良、土壤重金属生态修复、重金属超富集植物与根际微生物互作机制研究.

    田少静, 2022年中国科学院赣江创新研究院在读博士研究生, 主要从事环境功能材料设计与研发及其应用于稀土矿区的生态修复.

    滕泽栋, 中国科学院过程工程研究所副研究员, 主要从事污染生态环境跨介质修复、环境生物技术强化减污降碳、环境功能材料设计与开发等方面的基础和应用研究.

    李庭刚, 博士, 研究员, 博士生导师, 中国科学院过程所“百人计划”、江西省“千人计划”入选者. 2008年获中国科学院生态环境研究中心博士学位, 2006~2008年在新加坡南洋理工大学进行博士联合培养, 2010~2019年在新加坡国立大学做博士后、特聘研究员, 2019年至今在中国科学院过程工程研究所工作, 环境生物技术课题组组长. 中国科学院赣江创新研究院双聘. 长期从事环境生物过程转化机理与能源资源化技术研究, 主要涉及土壤-地下水修复、高盐有机废水处理与资源化、稀土生物冶金、生物新能源制造、环境污染物定向生物转化与功能材料应用基础研究. 主持国家自然科学基金、国家重点研发计划项目课题、地方科技重大专项以及企业委托等科研项目. 近年来在Science子刊Science Advances, Biotechnology for Biofuels, Environmental Science & Technology, Biotechnology and Bioengineering, Water Research, Bioresource Technology, Journal of Biotechnology, Renewable Energy等主流期刊上发表论文40余篇, 申请和授权发明专利20余项. 担任巴塞尔公约亚太区中心化学品和废物环境管理智库专家, 中国自然资源学会废弃物资源化专业委员会委员, Clean Energy Science and Technology等期刊编委, Membrane期刊客座编辑, 荣获2021年中国产学研促进会科技合作创新奖, 2022年中国发明协会发明创业成果奖二等奖.

  • 基金资助:
    鄂尔多斯市科技重大专项(2022EEDSKJZDZX014-1); 鄂尔多斯市科技重大专项(2022EEDSKJZDZX014-2); 江西省技术创新引导类计划项目(20212BDH81029); 稀土产业基金(IAGM2020DB06); 中国科学院重点部署项目(ZDRW-CN-2021-3-3)

Research Progress of Coal Gangue Modification Method and Its Resource and Environment Utilisation

Hualin Zhanga,b,c, Mengfei Zhaoa,b,c, Xiaoliang Jiangb, Shaojing Tianb, Zedong Tenga,e, Tinggang Lia,b,c,d,e()   

  1. a CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190
    b Key Laboratory of Rare Earth, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341003
    c School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341099
    d State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190
    e University of Chinese Academy of Sciences, Beijing 100049
  • Received:2024-01-29 Published:2024-04-02
  • Contact: *E-mail: tgli@ipe.ac.cn
  • Supported by:
    Science and Technology Major Program of Ordos City of China(2022EEDSKJZDZX014-1); Science and Technology Major Program of Ordos City of China(2022EEDSKJZDZX014-2); Technological Innovation Guidance Program of Jiangxi Province(20212BDH81029); Rare Earth Industry Fund(IAGM2020DB06); Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-3-3)

Coal gangue, a byproduct of coal mining and processing, has long been regarded as solid waste. However, with the increasing severity of resource scarcity and environmental pollution issues, the efficient utilization and resource recovery of coal gangue have become urgent needs. This paper reviews the modification and resource utilization of coal gangue, focusing on its introduction, pretreatment, modification methods, and the latest progress in resource utilization. Firstly, coal gangue is a porous granular material composed mainly of inorganic minerals, organic matter, and water. Due to its complex nature and diverse composition, the direct utilization of coal gangue is somewhat limited. Therefore, modifying coal gangue is a key step in achieving its resource utilization. Pretreatment before modification is a crucial step to ensure the effectiveness of coal gangue modification. This involves physical processes such as crushing, screening, magnetic separation, and washing of coal gangue to reduce particle size, achieve uniformity, enhance surface area and pore structure, thereby providing a solid foundation for subsequent modification. The modification methods of coal gangue mainly include chemical modification, biological modification, and composite modification. Chemical modification involves introducing functional groups or altering its chemical structure through processes such as acid-base treatment, organic modification, thermal activation, etc., thereby improving its adsorption performance, dispersibility, etc. Biological modification utilizes microorganisms, enzymes, and other biological systems to enhance the environmental friendliness and biocompatibility of coal gangue. Composite modification combines the advantages of various modifications to make coal gangue-based materials meet requirements better. Significant progress has been made in the resource utilization of coal gangue. Modified coal gangue is extensively utilized in environmental management sectors like soil remediation and wastewater treatment, showcasing excellent adsorption capabilities and catalytic activity. Furthermore, modified coal gangue is utilized as raw material in sectors such as construction materials, energy recovery, and fertilizer production, providing a new pathway for reducing mineral resource consumption and advancing circular economy development.

Key words: coal gangue, modification method, environmental application, resource utilization