Acta Chimica Sinica Previous Articles     Next Articles

Review

CRISPR/Cas9系统的光学调控研究进展

薛煜雯a, 李磊b, 李美星b,*, 沈清明b,*   

  1. a南京邮电大学 省部共建有机电子与信息显示国家重点实验室 化学与生命科学学院 江苏南京 210023;
    b南京邮电大学 省部共建有机电子与信息显示国家重点实验室 材料科学与工程学院 江苏南京 210023
  • 投稿日期:2024-06-12
  • 通讯作者: *E-mail: iammxli@njupt.edu.cn; iamqmshen@njupt.edu.cn
  • 作者简介:薛煜雯,南京邮电大学化学与生命科学学院在读硕士研究生,主要从事CRISPR/Cas13a近红外肿瘤诊疗纳米平台的构建及其应用研究。 李磊,南京邮电大学材料与科学工程学院在读硕士研究生,主要从事光控激活型分子荧光探针的设计及肿瘤靶向诊疗应用研究。李美星,博士,副教授,硕士生导师,2018年博士毕业于南京大学,同年入职南京邮电大学材料科学与工程学院,主要从事化学生物传感及光学成像、单颗粒/单细胞分析等领域的基础和应用研究。沈清明,博士,教授,博士生导师,江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省青蓝工程优秀教学团队负责人。2008年获南京大学理学博士学位, 2010年至今在南京邮电大学材料科学与工程学院工作。主要从事功能纳米材料的设计合成、生物纳米探针的组装及医学成像、光学诊疗平台构筑及面向肿瘤诊疗的应用研究。
  • 基金资助:
    江苏省自然科学基金面上项目(BK20221326),江苏省高等学校自然科学研究重大项目(20KJA430012),江苏高校“青蓝工程 ”资助

Advances in optical regulation of the CRISPR/Cas9 system

Yuwen Xue, Lei Li, Meixing Li*, Qingming Shen*   

  1. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2024-06-12
  • Supported by:
    Natural Science Foundation of Jiangsu Province (BK20221326), Natural Science Foundation of Jiangsu Higher Education Institutions (20KJA430012), Qing Lan Project of Jiangsu Province.

CRISPR/Cas9 gene editing system consists of clustered regularly interspaced short palindromic repeats (CRISPR) sequences and CRISPR-associated protein 9 (Cas9), characterized by its simple structure, easy modification, and strong gene editing ability. It has great potential for application in genome editing, transcriptional perturbation, epigenetic regulation, and other fields. Despite its significant advantages in gene editing, the CRISPR/Cas9 system fails to achieve precise spatial and temporal control over the editing process and it’s cell and tissue-specific recognition capability requires improvement. The potential off-target phenomenon of genotoxicity will be further aggravated with increased Cas9 activity, greatly limiting its application in complex biological systems. Therefore, developing gene editing systems capable of precisely controlling the expression of multiple endogenous genes has become a hot topic of current CRISPR/Cas9 research. Light, as a non-invasive medium with high spatiotemporal resolution, is easy to regulate in terms of duration, location, wavelength, and intensity. Optical regulation, as a novel spatiotemporal regulation strategy of CRISPR/Cas9, has attracted much attention due to its characteristics of minimal toxic side effects, high spatiotemporal resolution, and real-time controllability. Optical regulation strategies can also be used in conjunction with imaging technologies such as fluorescence imaging and photoacoustic imaging to track the delivery process, greatly reducing the difficulty and safety risks of gene editing in vivo, thereby achieving visual delivery and precise spatiotemporal control of CRISPR systems. This review aims to summarize various optical modulation strategies employed in CRISPR/Cas9 system in recent years, evaluating the advantages and disadvantages of these strategies, and provide an outlook on the challenges and prospects of optical modulation in the CRISPR/Cas9 system.

Key words: CRISPR/Cas9, Optical regulation, Gene editing, Cancer treatment, Specificity