Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (10): 1285-1292.DOI: 10.6023/A25050165 Previous Articles    

Review

邻近依赖性核酸自组装技术用于蛋白质相互作用解析

苗成旺a,b, 侯佳宁a,c, 汪俊彦a,*(), 韩达a,c,*()   

  1. a 中国科学院 杭州医学研究所 杭州 310022
    b 国科大杭州高等研究院 分子医学院 杭州 310024
    c 上海交通大学医学院 分子医学研究院 上海 200127
  • 投稿日期:2025-05-13 发布日期:2025-07-08
  • 通讯作者: 汪俊彦, 韩达
  • 作者简介:

    苗成旺, 于2024年获得中国药科大学学士学位, 现为中国科学院大学硕士研究生. 研究方向为开发智能核酸工具用于蛋白质相互作用信息的获取.

    侯佳宁, 于2020年获得湖南大学学士学位, 现为上海交通大学医学院博士研究生. 研究方向为开发荧光RNA传感与应答系统, 以及利用抗体偶联DNA实现蛋白质相互作用信息的精准记录.

    汪俊彦, 中国科学院杭州医学研究所助理研究员. 于2019年获得中国科学院化学研究所博士学位, 随后在上海交通大学分子医学研究院从事博士后研究工作至2022年. 主要研究方向为开发用于细胞功能分析与调控的智能核酸工具.

    韩达, 中国科学院杭州医学研究所研究员, 2013年于美国佛罗里达大学化学系获博士学位. 2014~2018在美国英特尔公司制程研发中心进行芯片计算及架构设计研究, 2022年起任中国科学院杭州医学研究所研究员. 主要从事核酸化学与分子诊断相关研究, 开发智能核酸工具应用于解决细胞分析与疾病诊断等生物医学中难点问题.

    “中国青年化学家”专辑.

  • 基金资助:
    国家重点研发计划(2021YFA0909400); 国家自然科学基金(22225402); 国家自然科学基金(32341017); 浙江省引进培育领军型创新创业团队(2024R01005)

Acquiring Protein-protein Interaction Information Based on Proximity-dependent Nucleic Acid Self-assembly Technology

Chengwang Miaoa,b, Jianing Houa,c, Junyan Wanga,*(), Da Hana,c,*()   

  1. a Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
    b School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
    c Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
  • Received:2025-05-13 Published:2025-07-08
  • Contact: Junyan Wang, Da Han
  • About author:

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    National Key Research and Development Program of China(2021YFA0909400); National Natural Science Foundation of China(22225402); National Natural Science Foundation of China(32341017); Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang Province(2024R01005)

Proximity-dependent nucleic acid self-assembly technology has emerged as an innovative approach for ultrasensitive detection and dynamic analysis of protein-protein interactions (PPIs) by converting transient PPI events into programmable nucleic acid sequence. This technology integrates signal amplification strategies with versatile readout modalities to achieve high-resolution PPI characterization. In this review, the working mechanisms of proximity-dependent nucleic acid assembly in PPI studies are systematically elucidated. First, the fundamental principle of proximity-induced local enrichment of probes is emphasized, which drives sequence-specific nucleic acid hybridization and self-assembly. Subsequently, nucleic acid signal amplification strategies, such as rolling circle amplification, are elaborated. Furthermore, conventional fluorescence detection and next-generation sequencing-based digital platforms are discussed, and their respective strengths in spatial resolution and single-molecule sensitivity are highlighted. Finally, future advancements are envisioned through interdisciplinary integration with artificial intelligence, microfluidics, and other cutting-edge technologies, which may facilitate transformative applications in precision medicine and related fields.

Key words: proximity-dependent nucleic acid self-assembly, protein-protein interaction, nucleic acid signal amplification, fluorescence detection, high-throughput sequencing