Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (11): 1386-1396.DOI: 10.6023/A25050154 Previous Articles     Next Articles

Perspective

三维碳基集流体在高比能钠金属电池中的应用与展望

张智强a,b, 董德锐a,b, 曹柳悦c,*(), 张斌伟a,b,*()   

  1. a 重庆大学化学化工学院 特种化学电源全国重点实验室 重庆 400044
    b 重庆大学前沿交叉学科研究院 先进电能源化学研究中心 重庆 400044
    c 重庆大学材料科学与工程学院 重庆 400044
  • 投稿日期:2025-05-10 发布日期:2025-08-11
  • 通讯作者: 曹柳悦, 张斌伟
  • 作者简介:

    张智强, 重庆大学在读硕士生. 2024年于中国石油大学(北京)获得工学学士学位, 2024年进入重庆大学攻读硕士学位. 目前研究方向主要包括三维集流体材料及固态电解质等高比能电池的关键材料开发.

    张斌伟, 副教授, 重庆大学化学化工学院、前沿交叉学科研究院先进电能源化学研究中心、特种化学电源全国重点实验室. 于厦门大学化学化工学院获得学士和硕士学位, 2019年于澳大利亚伍伦贡大学获得博士学位, 分别于澳大利亚新南威尔斯大学及伍伦贡大学从事博士后. 主要从事钠硫电池、钠离子电池及电催化等研究.

    ★ "中国青年化学家"专辑

  • 基金资助:
    项目受国家自然科学基金(22279011); 重庆市技术创新与应用发展专项重点项目(CSTB2024TIAD-KPX0094)

Application and Perspectives of 3D Carbon-based Current Collectors for High Specific Energy Sodium Metal Batteries

Zhang Zhiqianga,b, Dong Deruia,b, Cao Liuyuec,*(), Zhang Binweia,b,*()   

  1. a State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044
    b Center of Advanced Electrochemical Energy (CAEE), Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044)
    c College of Materials Science and Engineering, Chongqing University, Chongqing 400044
  • Received:2025-05-10 Published:2025-08-11
  • Contact: Cao Liuyue, Zhang Binwei
  • About author:

    ★ For the VSI "Rising Stars in Chemistry"

  • Supported by:
    National Natural Science Foundation of China(22279011); Key Project of Chongqing Technology Innovation and Application Development Special Fund(CSTB2024TIAD-KPX0094)

Sodium metal batteries (SMBs) have emerged as promising next-generation energy storage systems due to sodium’s high theoretical specific capacity (1076 mA•h•g-1) and natural abundance in the Earth’s crust (2.3%). However, dendrite formation during cycling leads to safety risks and rapid capacity degradation. This review provides a comprehensive analysis of three-dimensional (3D) carbon-based current collectors (CCs) as transformative platforms to regulate Na+ deposition. 3D carbon architectures, such as carbon nanotubes, graphene aerogels, and carbon cloth, offer high surface areas (500~1500 m2•g-1), robust mechanical frameworks, and optimized ion transport pathways, effectively reducing local current density and nucleation overpotential by 40%~60%. Firstly, the fabrication technologies are critically discussed. The template methods enable precise pore control (1~50 mm) but risk structural collapse. Sacrificial templates (e.g., MOFs) address this limitation, yielding composites with high conductivity and specific capacity (>600 mA•h•g-1). The use of 3D-printed nitrogen-doped graphene aerogels (3DP-NGA) facilitates dendrite-free sodium deposition, where pyrrolic-N defects act as nucleation sites to guide uniform Na plating, even in complex architectures. Electrospinning produces binder-free mesoporous carbon nanofibers (MCNFs), while chemical vapor deposition (CVD) synthesizes graphitic domains with tunable porosity. Atomic doping of 3D carbon materials can increase their sodium affinity, thereby promoting more uniform sodium deposition. Functionalization strategies such as alloying and incorporating organic or inorganic composites can further enhance sodiophilicity and help form a stable solid electrolyte interphase (SEI) during cycling. In addition, rational pore design can effectively regulate sodium plating and stripping behavior, thereby suppressing dendrite growth. Looking ahead, we envision several promising opportunities and pressing challenges: advancing in situ characterization techniques to unravel the fundamental structure-performance correlations; harnessing machine learning-driven inverse design to accelerate materials discovery; developing scalable roll-to-roll manufacturing strategies for gradient-doped CCs with projected costs below $5/m²; and integrating these architectures with solid-state electrolytes to unlock energy densities surpassing 500 W•h•kg-1. Overall, this review establishes 3D carbon-based CCs as pivotal enablers for practical SMBs, bridging fundamental research and industrial implementation through multidisciplinary innovation.

Key words: sodium metal battery, carbon-based current collector, sodium-philic characteristic, electronic structure, interface stability