Glutathione (GSH)-capped CdTe quantum dots (GSH-CdTe QDs) were synthesized in aqueous solution. In pH 7.4 Tris-HCl buffer medium, acridine orange (AO) was adsorbed to the surfaces of GSH-CdTe QDs via electrostatic attraction and formed ground state complex, which resulted in the quenching of the fluorescence of GSH-CdTe QDs. Adding ctDNA to GSH-CdTe QDs-AO system leaded to the fluorescence intensity of GSH-CdTe QDs recover, which can be explained by that the addition of ctDNA to the system induced AO to dissociate from the surface of GSH-CdTe QDs and embed into its double helix structure. According to the fluorescence quencher and restoration for GSH-CdTe QDs, fluorescence reversible control of QDs was realized. The fluorescence intensity change of GSH-CdTe QDs-AO system aroused by the addition of ctDNA was proportional to the ctDNA concentration in a certain range, and its detection limit was 0.13 ng•mL-1. Based on it, the simple, rapid, accurate and sensitive methods had been proposed to determine ctDNA. The interaction of GSH-CdTe QDs-AO-ctDNA was studied by resonance Rayleigh scattering (RRS), absorption spectra and image of atomic force microscopy. The interaction mechanism was discussed and corresponding model of interaction was built.
GONG Hui-Ping
,
LIU Shao-Pu
,
YIN Peng-Fei
,
YAN Shu-Guang
,
FAN Xiao-Qing
,
HE You-Qiu
. Study on the Interaction between CdTe Quantum Dot-Acridine Orange-Calf Thymus DNA by Fluorescence Reversible Control[J]. Acta Chimica Sinica, 2011
, 69(23)
: 2843
-2850
.
DOI: 10.6023/A1106031