Full Papers

Theoretical Study on NLO Properties of TTF-π Conjugated Bridge-verdazyl Cation Diradicals

  • LI Zhuo ,
  • DU Xiao-Feng ,
  • MA Na-Na ,
  • SUN Shi-Ling ,
  • CHOU Yong-Qing
Expand
  • Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024

Received date: 2011-09-23

  Revised date: 2011-11-29

  Online published: 2012-02-25

Supported by

Project supported by the National Natural Science Foundation of China (No.20873017);and the Natural Science Foundation of Jilin Province (No.20101154).

Abstract

The stabilities, polarizabilities αs and the first hyperpolarizabilities βtot for a series of TTF-π conjugated bridge-verdazyl cation diradicals were investigated by using the UPBE1PBE method combined with the finite field (FF) approach. The results indicate that introducing conjugated bridges to TTF- verdazyl cation diradicals results in the conjugation of systems increasing, and then the αs and βtot values increasing (except for the βtot value of system 2S). The spin multiplicity and conformation both have influence on polarizability and the first hyperpolarizability. The polarizabilities of all systems decrease when the diradical systems change from singlet into triplet, while the first hyperpolarizabilities increase obviously. Taking the system 2 for example, the αs and βtot values change slightly with conformation in singlet, while the αs and βtot values decrease with increasing of the dihedral angle θ1 and θ2 in triplet.

Cite this article

LI Zhuo , DU Xiao-Feng , MA Na-Na , SUN Shi-Ling , CHOU Yong-Qing . Theoretical Study on NLO Properties of TTF-π Conjugated Bridge-verdazyl Cation Diradicals[J]. Acta Chimica Sinica, 2012 , 70(02) : 107 -113 . DOI: 10.6023/A1109231

References

1 Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley & Sons, Inc., New York, 1991.  

2 Marder, S. R.; Perry, J. W. Science 1994, 263, 1706.  

3 Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195.  

4 Li, Q.-Q.; Qin, J.-G.; Li, Z. Chin. J. Org. Chem. 2011, 31, 1337 (in Chinese). (李倩倩, 秦金贵, 李振, 有机化学, 2011, 31, 1337.)

5 Kang, H.; Evmenenko, G.; Dutta, P.; Clays, K.; Song, K.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 6194.  

6 Nalwa, H. S. Adv. Mater. 1993, 5, 341.  

7 Kawata, S.; Sun, H. B.; Tanaka, T.; Takada, K. Nature2001, 412, 697.  

8 Breitung, E. M.; Shu, C.-F.; McMahon, R. J. J. Am. Chem. Soc. 2000, 122, 1154.  

9 Andreu, R.; Blesa, M. J.; Carrasquer, L.; Garín, J.; Orduna, J.; Villacampa, B.; Alcalá, R.; Casado, J.; Delgado, M. C. R.; Navarrete, J. T. L.; Allain, M. J. Am. Chem. Soc. 2005, 127, 8835.  

10 Liu, H.-B.; Qiu, Y.-Q.; Sun, S.-L.; Liu, C.-G.; Sun, X.-N. Acta Chim. Sinica 2010, 68, 2509 (in Chinese). (刘海波, 仇永清, 孙世玲, 刘春光, 孙晓娜, 化学学报, 2010, 68, 2509.)

11 Nakano, M.; Yamada, S.; Yamaguchi, K. Chem. Phys. Lett. 1999, 311, 221.  

12 Champagne, B.; Botek, E.; Nakano, M.; Nitta, T.; Yamaguchi, K. J. Chem. Phys. 2005, 122, 114315.

13 Nakano, M.; Kishi, R.; Ohta, S.; Takebe, A.; Takahashi, H.; Furukawa, S.; Kubo, T.; Morita, Y.; Nakasuji, K.; Yamaguchi, K.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E. J. Chem. Phys. 2006, 125, 74113.

14 Ohta, S.; Nakano, M.; Kubo, T.; Kamada, K.; Ohta, K.; Kishi, R.; Nakagawa, N.; Champagne, B.; Botek, E.; Takebe, A.; Umezaki, S.; Nate, M.; Takahashi, H.; Furukawa, S.; Morita, Y.; Nakasuji, K.; Yamaguchi, K. J. Phys. Chem. A 2007, 111, 3633.  

15 Nakano, M.; Champagne, B.; Botek, E.; Ohta, K.; Kamada, K.; Kubo, T. J. Chem. Phys. 2010, 133, 154302.

16 Nakano, M.; Minami, T.; Yoneda, K.; Muhammad, S.; Kishi, R.; Shigeta, Y.; Kubo, T.; Rougier, L.; Champagne, B.; Kamada, K.; Ohta, K. J. Phys. Chem. Lett. 2011, 2, 1094.  

17 Polo, V.; Alberola, A.; Andres, J.; Anthony, J.; Pilkington, M. Phys. Chem. Chem. Phys. 2008, 10, 857.

18 Segura, J. L.; Martín, N. Angew. Chem. Int. Ed. 2001, 40, 1372.  

19 Liu, C. G.; Guan, W.; Song, P.; Yan, L. K.; Su, Z. M. Inorg. Chem. 2009, 48, 6548.  

20 Liu, C. G.; Guan, X. H.; Su, Z. M. J. Phys. Chem. C 2011, 115, 6024.  

21 Fico Jr., R. M.; Hay, M. F.; Reese, S.; Hammond, S.; Lambert, E.; Fox, M. A. J. Org. Chem. 1999, 64, 9386.  

22 de Graaf, C.; Sousa, C.; de P. R. Moreira, I.; Illas, F. J. Phys. Chem. A 2001, 105, 11371.  

23 Rota, J.-B.; Norel, L.; Train, C.; Amor, N. B.; Maynau, D.; Robert, V. J. Am. Chem. Soc. 2005, 130, 10380.

24 Rota, J.-B.; Le Guennic, B.; Robert, V. Inorg. Chem. 2010, 49, 1230.  

25 Sun, X.-N.; Qiu, Y.-Q.; Sun, S.-L.; Du, Y.-Q.; Su, Z.-M. Acta Chim. Sinica 2009, 67, 1718 (in Chinese). (孙晓娜, 仇永清, 孙世玲, 杜艳青, 苏忠民, 化学学报, 2009, 67, 1718.)

26 Suponitsky, K. Y.; Liao, Y.; Masunov, A. E. J. Phys. Chem. A 2009, 113, 10994.  

27 Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.

28 Champagne, B.; Perpète, E. A.; Jacquemin, D. J. Phys. Chem. A 2000, 104, 4755.  

29 Machado, A. E. de A.; De Sousa, L. A.; Dos Santos, H. F.; De Almeida, W. B. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1410.  

30 Ma, N. N.; Yang, G. C.; Sun, S. L.; Liu, C. G.; Qiu, Y. Q. J. Organomet. Chem. 2011, 696, 2380.  

31 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 1, Gaussian, Inc., Wallingford, CT, 2009.  

32 Dehu, C.; Meyers, F.; Brédas, J. L. J. Am. Chem. Soc. 1993, 115, 6198.  

33 Qiu, Y. Q.; Qin, C. S.; Su, Z. M.; Yang, G. C.; Pan, X. M.; Wang, R. S. Synth. Met. 2005, 152, 273.  

34 Qiu, Y. Q.; Fan, H. L.; Sun, S. L.; Liu, C. G.; Su, Z. M. J. Phys. Chem. A 2008, 112, 83.  

35 Du, X.-F.; Sun, S.-L.; Liu, H.-B.; Sun, X.-N.; Qiu, Y.-Q. Acta Chim. Sinica 2011, 69, 1387 (in Chinese). (杜晓凤, 孙世玲, 刘海波, 孙晓娜, 仇永清, 化学学报, 2011, 69, 1387.)

36 McLean, A. D.; Yoshimine, M. J. Chem. Phys. 1967, 47, 1927.

37 Champagne, B. Chem. Phys. Lett. 1996, 261, 57.  

38 Prigogine, I.; Rice, S. A. In Advances in Chemical Physics, Vol. 104, Ed.: Bishop, D. M., John Wiley & Sons, Inc., New York, 1998, pp. 1~40.  

39 Romaniello, P.; D'Andria, M. C.; Lelj, F. J. Phys. Chem. A 2010, 114, 5838.  

40 Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195.  

41 Chahma, M.; Macnamara, K.; van der Est, A.; Alberola, A.; Polo, V.; Pilkington, M. New J. Chem. 2007, 31, 1973.
Outlines

/