Full Papers

Construction of Self-Organized Hybrid Ion Channel Membrane and Cationic Transport Mechanism

  • ZHANG Xin-Xin ,
  • WANG Li-Hua ,
  • YUAN Yan-Bin
Expand
  • a College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083;
    b Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190;
    c State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160

Received date: 2011-09-09

  Revised date: 2011-11-30

  Online published: 2012-02-25

Supported by

Project supported by the National Nature Science Foundation of China (No.20704041) and National Program on Key Basic Research Project (No. 2009CB623407).

Abstract

A kind of compound which could form hybrid organic-inorganic material-3-(ureido-4-methoxyphenyl)propyltriethoxysilane was obtained from 3-isocyanatopropyltriethoxysilaneand p-anisidine. The structure and the crystallinity of the compound were characterized by FT-IR, 1H NMR, DSC, and XRD methods. According to the self-assembling property of the compound, the ion channel hybrid membrane with the homogeneous structure was obtained by blending the compound and polyvinyl alcohol (PVA). Next, the cation transport properties of the membrane were tested by our self-made device, and the transport mechanism was proposed. SEM revealed that the ion channel hybrid membrane was dense and defect free. The thickness of the membrane was 8 μm from the SEM images of cross section. Five kinds of cations were chosen for membrane transport experiments. The results demonstrated that the self-organized hybrid ion channel membrane could transport monovalent Li+, Na+and K+, which was attributed to the cation-π interaction with the methoxyphenyl moiety. The process of alkali cationic transport across membrane was explained with the dissolution-diffusion mechanism. The results showed that the permeability of Li+, Na+and K+transport through the hybrid membrane followed the order PNa+ > PK+ > PLi+, which revealed that the self-organized hybrid ion channel membrane reported in this paper preferred to transport Na+. Besides the hybrid membrane could not transport divalent Ca2+and Mg2+. The result can provide new membrane materials for the separation of monovalent ions and divalent ions.

Cite this article

ZHANG Xin-Xin , WANG Li-Hua , YUAN Yan-Bin . Construction of Self-Organized Hybrid Ion Channel Membrane and Cationic Transport Mechanism[J]. Acta Chimica Sinica, 2012 , 70(02) : 170 -176 . DOI: 10.6023/A1109098

References

1 Hucho, F.; Weise, C. Angew. Chem., Int. Ed. 2001, 40, 3100.  

2 Vaitheeeswaran, S.; Yin, H.; Raisaiah, J. C.; Hummer, G. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17002.

3 Jeon, Y. J.; Kim, H.; Jon, S.; Selvapalam, N.; Oh, D. H.; Seo, I.; Park, C. S.; Jung, S. R.; Koh, D. S.; Kim, K. J. Am. Chem. Soc. 2004, 126, 15944.  

4 Agre, P. Angew. Chem. Int. Ed. 2004, 43, 4278.  

5 Gokel, G. W.; De, W. S. L.; Meadows, E. S. Eur. J. Org. Chem. 2000, 17, 2967.

6 Percec, V.; Johansson, G.; Heck, J.; Ungar, G.; Batty, S. V. J. Chem. Soc. Perkin Trans. 1 1993, 13, 1411.

7 Johansson, G.; Percec, V.; Ungar, G.; Abramic, D. J. Chem. Soc. Perkin Trans. 1 1994, 4, 447.

8 Beginn, U.; Zipp, G.; M?ller, M. Adv. Mater. 2000, 12, 510.  

9 Beginn, U.; Zipp, G.; Mourran, A.; Walther, P.; M?ller, M. Adv. Mater. 2000, 12, 513.  

10 Tang, C.-C.; Wang, L.-H.; Yun, Y.-B.; Zhang, C.-L.; Liu, B.-Q. Acta Chim. Sinica 2011, 69, 343 (in Chinese). (唐橙橙, 王丽华, 贠延滨, 张陈淋, 刘必前, 化学学报, 2011, 69, 343.)

11 Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296.  

12 Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 668.  

13 Ma, L.; Melegari, M.; Collombini, M.; Davis, J. T. J. Am. Chem. Soc. 2008, 130, 2938.  

14 Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem., Int. Ed. Engl. 2001, 40, 998.

15 Sidorov, V.; Kotch, F. W.; Abdrakhmanova, G.; Mizani, R.; Fettinger, J. C.; Davis, J. T. J. Am. Chem. Soc. 2002, 124, 2267.  

16 Michau, M.; Caraballo, R.; Arnal-Hérault, C.; Barboiu, M. J. Membr. Sci. 2008, 321, 22.  

17 Michau, M.; Barboiu, M.; Caraballo, R.; Arnal-Hérault, C.; Perriat, P.; Lee, A. V. D.; Pasc, A. Chem. Eur. J. 2008, 14, 1776.

18 Zhang, X.-X.; Wang, L.-H.; Yun, Y.-B. Acta Polymerica Sinica 2010, (9), 1059 (in Chinese). (张信信, 王丽华, 贠延滨, 高分子学报, 2010, (9), 1059.)

19 Shi, Y.-Q.; Chen, G.-W. Acta Polymerica Sinica 1996, (2), 210 (in Chinese). (施艳荞, 陈观文, 高分子学报, 1996, (2), 210.)

20 Nasr, G.; Barboiu, M.; Ono, T.; Fujii, S.; Lehn, J. M. J. Membr. Sci. 2008, 321, 8.  

21 Hu, X.-H.; Ping, Z.-H.; Zhu, Q.; Ding, Z.-M.; Ding, Y.-D. Chem. J. Chin. Univ. 1998, 19, 647 (in Chinese). (胡晓华, 平郑骅, 朱青, 丁之明, 顶雅娣, 高等学校化学 学报, 1998, 19, 647.)

22 Conway, B. E. Ionic Hydration in Chemistry and Biophysics, Elsevier Scientific Publishing Company, New York, 1981, p. 73.  

23 Carbacos, O. M.; Weinheimer, C. J.; Lisy, J. M. J. Chem. Phys. 1999, 108, 5151.

24 Carbacos, O. M.; Weinheimer, C. J.; Lisy, J. M. J. Chem. Phys. 1999, 110, 8429.
Outlines

/