Full Papers

Study on Structure and Rate Performance of LiFePO4/C Composite Cathode Material via Na Doping

  • LU Xiao-Ting ,
  • LI Dong-Lin ,
  • FAN Xiao-Yong ,
  • ZHAO Peng ,
  • GOU Lei ,
  • LI Yan ,
  • LI Qian ,
  • WANG Jing
Expand
  • Laboratory of Energy Materials and Devices, School of Materials and Engineering, Chang’an University, Xi’an 710064

Received date: 2011-07-20

  Revised date: 2011-09-28

  Online published: 2011-10-27

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20903016, 21073021, 21103013), Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708084), Fundamental Research Funds for the Central Universities (Nos. CHD2010ZD008, CHD2010JC006, CHD2011ZD007).

Abstract

Li0.97Na0.03FePO4/C composite cathode material was prepared by a simple wet chemistrycarbothermal reduction method using Fe(NO3)3, LiNO3, NH4H2PO4 and NaNO3 as starting materials. The structure and charging-discharging rate properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and charge-discharge test. Furthermore, the kinetics of lithium-ion extraction and insertion at LiFePO4/C were evaluated from cyclic voltammetry (CV) curves and electrochemical impedance spectroscopy (EIS). The results indicate that the Li0.97Na0.03FePO4 solid-solution with olivine structure is obtained. Na-doping enlarges one-dimensional lithium-ion diffusion pathway in the olivine structure. Consequently, the materials exhibit a decrease in the charge transfer resistance by 67% and an increase in the lithium-ion diffusion coefficient by 3 ~ 4 times. The initial discharge capacities of Li0.97Na0.03FePO4/C sample at the rate of 0.1 C and 2 C are 152 mAh·g-1 and 109 mAh·g-1, respectively, which increase 4.83% and 62.69% compared with that of un-doped LiFePO4/C.

Cite this article

LU Xiao-Ting , LI Dong-Lin , FAN Xiao-Yong , ZHAO Peng , GOU Lei , LI Yan , LI Qian , WANG Jing . Study on Structure and Rate Performance of LiFePO4/C Composite Cathode Material via Na Doping[J]. Acta Chimica Sinica, 2012 , 70(03) : 223 -228 . DOI: 10.6023/A1107201

References

1 Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  

2 Kang, B.; Ceder, G. Nature 2009, 458, 190.  

3 Balke, N.; Jesse, S.; Morozovska, A. N.; Eliseev, E.; Chung, D. W.; Kim, Y.; Adamcayk, L.; Garcia, R. E.; Dudney, N.; Kalinin, S. V. Nat. Nanotechnol. 2010, 5, 749.  

4 Yuan, L. X.; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J. T.; Huang, Y. H.; Goodenough, J. B. Energy Environ. Sci.2011, 4, 269.  

5 Zhang, W. J. J. Power Sources 2011, 196, 2962.  

6 Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144(4), 1188.

7 Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997,144(5), 1609.

8 Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97,498.  

9 Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater.2002, 1, 123.  

10 Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nat. Mater.2004, 3, 147.  

11 Molenda, J.; Ojczyk, W.; Swierczek, K.; Zajac, W.; Krok, F.; Dygas, J.; Liu, R. S. Solid State Ionics 2006, 177, 2617.  

12 Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics 2002, 148, 45.  

13 Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Phys. Chem. C 2010, 114, 3477.  

14 Oh, S. W.; Myung, S. T.; Oh, S. M.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. K. Adv. Mater. 2010, 22, 4842.  

15 Park, K. S.; Son, J. T.; Chung, H. T.; Kim, S. J.; Lee, C. H.; Kang, K. T.; Kim, H. G. Solid State Commun. 2004, 129,311.  

16 Cui, Y.; Zhao, X. L.; Guo, R. S. J. Alloys Compd. 2010, 490,236.  

17 Cui, Y.; Zhao, X. L.; Guo, R. S. Mater. Res. Bull. 2010, 45,844.  

18 Zaghib, K.; Goodenough, J. B.; Mauger, A.; Julien, C. J. Power Sources 2009, 194, 1021.  

19 Konarova, M.; Taniguchi, I. J. Power Sources 2009, 194,1029.  

20 Ouyang, C. Y.; Shi, S. Q.; Wang, Z. X.; Li, H.; Huang, X. J.; Chen, L. Q. J. Phys.: Condens. Matter 2004, 16, 2265.  

21 Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7(2), A30.  

22 Ouyang, C. Y.; Wang, D. Y.; Shi, S. Q.; Wang, Z. X.; Li, H.; Huang, X. J.; Chen, L. Q. Chin. Phys. Lett. 2006, 23, 61.  

23 Xu, J.; Chen, G. Physica B 2010, 405, 803.  

24 Yin, X. G.; Huang, K. L.; Liu, S. Q.; Wang, H. Y.; Wang, H. J. Power Sources 2010, 195, 4308.  

25 Sun, C. S.; Zhou, Z.; Xu, Z. G.; Wang, D. G.; Wei, J. P.; Bian, X. K.; Yan, J. J. Power Sources 2009, 193, 841.  

26 Yu, C. Y.; Wang, Z. L.; Chen, Y.; Xia, D. G.; Chu, W. S.; Wu, Z. Y. Rare Metals 2009, 28(4), 317.

27 Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. Angew. Chem., Int. Ed. 2008, 47, 7461.  

28 Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Wiley, New York, 1980, p. 218.

29 Levi, M. D.; Aurbach, D. J. Electroanal. Chem. 1997, 421,79.  

30 Das, S. R.; Majumder, S. B.; Katiyar, R. S. J. Power Sources 2005, 139, 261.  

31 Liu, S.-Q.; Li, S.-C.; Huang, K.-L. Acta Chim. Sinica 2007,65, 10 (in Chinese). (刘素琴, 李世彩, 黄可龙, 化学学报, 2007, 65, 10.)

32 Liu, G. Q.; Kuo, H. T.; Liu, R. S.; Shen, C. H.; Shy, D. S.; Xing, X. K.; Chen, J. M. J. Alloys Compd. 2010, 496, 512.  

33 Zhu, Y. R.; Xie, Y.; Zhu, R. S.; Shu, J.; Jiang, L. J.; Qiao, H. B.; Yi, T. F. Ionics 2011, 17, 437.  
Outlines

/