Full Papers

Controllable Synthesis of Chitosan-Mediated Gold Nanoplate and the Growth Mechanisms

  • YANG Chuan-Xiao ,
  • SUN Xiang-Ying ,
  • LIU Bin
Expand
  • College of Materials Science and Engineering, Huaqiao University, Xiamen 361021

Received date: 2011-08-12

  Revised date: 2011-11-01

  Online published: 2011-11-14

Supported by

Project supported by the National Natural Science Foundation of China (No. 20955001), the Foundation of Overseas-Chinese Affairs Office of the State Council of China (No. 09QZR05) and the Fundamental Research Funds for the Huaqiao University (No. JB-ZR1118).

Abstract

By chitosan as a stabilizer and reducing agent, the tunable surface plasmon resonance (SPR) absorption peak of gold nanoplate has been successfully fabricated by water bath heating of solution containing HAuCl4, chitosan and gold nanoseeds. The SEM images indicated that the gold nanoplates were mainly composed of triangular and truncated triangular shape. The edge is about 170 nm. X-ray diffraction analyses indicated that the gold nameplates were pure single crystals with {111} planes as their basal planes. The growth mechanisms on synthesis of chitosan-mediated gold nanoplate were discussed. Under optimum conditions the SPR absorption peak of gold nanoplate in-plane dipolar is 920 nm. The experiment results showed that the near-infrared SPR absorption peak and the absorption intensity can be effectively controlled by controlling the amounts of chitosan and gold seeds, water bath temperature and bath time.

Cite this article

YANG Chuan-Xiao , SUN Xiang-Ying , LIU Bin . Controllable Synthesis of Chitosan-Mediated Gold Nanoplate and the Growth Mechanisms[J]. Acta Chimica Sinica, 2012 , 70(03) : 259 -264 . DOI: 10.6023/A1108121

References

1 Zhang, L.; Huang, C. Z.; Li, Y. F.; Li, Q. Cryst. Growth Des. 2009, 9, 3211.  

2 Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870.  

3 Wang, Y.; Li, Y. F.; Wang, J.; Sang, Y.; Huang, C. Z. Chem. Commun. 2010, (46), 1332.

4 Wang, J.; Wu, H.; Huang, C.-Z. Sci. China, Ser. B 2008, 38, 929 (in Chinese). (王健, 吴昊, 黄承志, 中国科学B 辑: 化学, 2008, 38, 929.)

5 Guo, B.; Shan, W.-W.; Luo, J.-S.; Tang, Y.-J.; Cheng, J.-P. Acta Chim. Sinica 2008, 66, 1435 (in Chinese). (郭斌, 单雯雯, 罗江山, 唐永建, 程建平, 化学学报, 2008, 66, 1435.)

6 Li, C.; Cai, W.; Cao, B.; Sun, F.; Li, Y.; Kan, C.; Zhang, L. Adv. Funct. Mater. 2006, 16, 83.  

7 Chen, C.; Hsu, C.; Kuo, P. Langmuir 2007, 23, 6801.  

8 Wang, L. Y.; Wu, X. Z.; Li, X. N.; Wang, L.; Pei, M. S.; Tao, X. T. Chem. Commun. 2010, (46), 8422.

9 Huang, H. Z.; Yang, X. R. Biomacromolecules 2004, 5,2340.  

10 Wang, Y.; Li, Y. F.; Huang, C. Z. J. Phys. Chem. C 2009, 113, 4315.  

11 Wu, L. L.; Shi, C. S.; Tian, L. F.; Zhu, J. J. Phys. Chem. C 2008, 112, 319.  

12 Guo, R.; Zhang, L. Y.; Zhu, Z. S.; Jiang, X. Q. Langmuir 2008, 24, 3459.  

13 Ding, Y.; Gu, G.; Xia, X. H.; Huo, Q. J. Mater. Chem. 2009, 19, 795.

14 Wang, W.; Cui, H. J. Phys. Chem. C 2008, 112, 10759.  

15 Yang, K.; Wang, X.; Zhou, Z.; Xu, J.; Weng, J.; Zhang, Q. IET Nanobiotechnol. 2007, 1, 107.  

16 Beeram, S. R.; Zamborini, F. P. ACS Nano 2010, 4(7), 3633.  

17 Beeram, S. R.; Zamborini, F. P. J. Am. Chem. Soc. 2009, 131(33), 11689.

18 Aslan, K.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B 2005, 109, 6247.  

19 Zhang, L. Ph.D. Dissertation, Southwest University, 2010, 34 (in Chinese). (张力, 博士论文, 西南大学, 2010, 34.)

20 Salzemann, C.; Lisiecki, L.; Urban, J.; Pileni, M. P. Langmuir 2004, 20, 11772.  
Outlines

/