Full Papers

Synthesis of Polyoxometalate/TiO2 Mesoporous Hybrid Materials and Their Photocatalytic Performance

  • Xu Qianqian ,
  • Yang Chun
Expand
  • Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210097

Received date: 2011-08-02

  Revised date: 2011-10-09

  Online published: 2011-11-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 20473037), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Leading Academic Discipline Program of 211 Project of Nanjing Normal University (the 3rd phase).

Abstract

A tungstophosphate derivative, (Bu4N)3PW11O39[O(SiOH)2] (TBAPW11Si2), with Si-OH groups on the surface was grafted on mesoporous TiO2 synthesized by an evaporation-induced self-assembly method. Such TBAPW11Si2/TiO2 mesoporous hybrid materials were characterized by IR, XRD, N2 adsorption- desorption, TEM and ICP-AES techniques. It was shown that the covalent linkage between TBAPW11Si2 and TiO2 formed by condensation of Si-OH on TBAPW11Si2 with Ti-OH on TiO2. Enough Ti-OH groups on TiO2 surface and the calcination at a certain temperature were necessary for the condensation. Compared with TiO2 support, the hybrid samples had a little higher crystallinity of anatase, but the surface area, pore volume and pore size decreased as TBAPW11Si2 loading increased. In the degradation of methyl orange, these hybrid samples exhibited higher photocatalytic activities than anatase TiO2 support, and their activities were even comparable with that of Degussa P25 with much higher crystallinity, which can be mainly attributed to a synergistic effect between polyoxometalate and TiO2.

Cite this article

Xu Qianqian , Yang Chun . Synthesis of Polyoxometalate/TiO2 Mesoporous Hybrid Materials and Their Photocatalytic Performance[J]. Acta Chimica Sinica, 2012 , 0(04) : 392 -398 . DOI: 10.6023/A1108024

References

1 Dai, Q.; He, N.; Guo, Y.; Yuan, C. Chem. Lett. 1998, 27, 1113.

2 Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J. Chem. Mater. 2003, 15, 2280.  

3 Yoon, M.; Chang, J. A.; Kim, Y.; Choi, J. R.; Kim, K.; Lee, S. L. J. Phys. Chem. B 2001, 105, 2539.  

4 Ozer, R. R.; Ferry, J. L. Environ. Sci. Technol. 2001, 35, 3242.  

5 Yang, Y.; Guo, Y. H.; Hu, C. W.; Jiang, C. J.; Wang, E. B. J. Mater. Chem. 2003, 13, 1686.  

6 Marcì, G.; García-López, E.; Palmisano, L. Catal. Today 2009, 144, 42.  

7 Marcì, G.; García-López, E.; Palmisano, L.; Carriazo, D.; Martín, C.; Rives, V. Appl. Catal. B: Environ. 2009, 90, 497.  

8 Pizzio, L. R.; Ca?ceres, C. V.; Blanco, M. N. Appl. Catal. A: Gen. 1998, 167, 283.  

9 Carriazo, D.; Addamo, M.; Marcì, G.; Martín, C.; Palmisano, L.; Rives, V. Appl. Catal. A: Gen. 2009, 356, 172.  

10 Fuchs, V.; Méndez, L.; Blanco, M.; Pizzio, L. Appl. Catal. A: Gen. 2009, 358, 73.  

11 Fuchs, V. M.; Soto, E. L.; Blanco, M. N.; Pizzio, L. R. J. Colloid Interface Sci. 2008, 327, 403.  

12 Yang, Y.; Wu, Q.; Guo, Y.; Hu, C.; Wang, E. J. Mol. Catal. A: Chem. 2005, 225, 203.  

13 Yan, X.-M.; Mei, P.; Lei, J.; Mi, Y.; Xiong, L.; Guo, L. J. Mol. Catal. A: Chem. 2009, 304, 52.  

14 Li, K.; Guo, Y.; Ma, F.; Li, H.; Chen, L.; Guo, Y. Catal. Commun. 2010, 11, 839.  

15 Li, D.; Guo, Y.; Hu, C.; Jiang, C.; Wang, E. J. Mol. Catal. A: Chem. 2004, 207, 181.

16 Yang, Y.; Guo, Y.; Hu, C.; Wang, Y.; Wang, E. Appl. Catal. A: Gen. 2004, 273, 201.  

17 Wang, J.; Yang, C. Acta Chim. Sinica 2009, 67, 271 (in Chinese). (王金娥, 杨春, 化学学报, 2009, 67, 271.)

18 Luo, X. J.; Yang, C.; Chen, Y. Acta Chim. Sinica 2011, 69, 1 (in Chinese). (罗秀娟, 杨春, 陈煜, 化学学报, 2011, 69, 1.)

19 Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. Inorg. Chem. 1983, 22, 207.  

20 Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Adv. Funct. Mater. 2004, 14, 335.  
Outlines

/