Full Papers

Investigations on the Kinetics for the Reaction Class of Hydrogen Abstractions from Substituted Cyclohexane by Hydrogen Atom

  • Wang Suchuan ,
  • Li Jun ,
  • Zhu Quan ,
  • Li Zerong ,
  • Li Xiangyuan
Expand
  • a College of Chemical Engineering, Sichuan University, Chengdu 610065;
    b College of Chemisitry, Sichuan University, Chengdu 610064

Received date: 2011-06-10

  Revised date: 2011-10-10

  Online published: 2012-03-17

Supported by

Project supported by the National Natural Science Foundation of China (Project Nos. 91016002, 20903067) and the Ministry of Education Returned Scientific Research Foundation (Project No. 20111139-10-10).

Abstract

This work presents an application of the reaction class transition state theory (RC-TST) to predict kinetics parameters for hydrogen abstraction reactions of the substituted cyclohexane. All parameters for the RC-TST method of this reaction class were derived from the 14 representative reactions in this class. And the linear energy relationship (LER) was also established. The rate constants for selected reactions predicted by the RC-TST/LER are in good agreement with those calculated with TST/Eckart method. Compared with results from the TST/Eckart calculations, the RC-TST/LER method is found to be quite efficient and time-saving.

Cite this article

Wang Suchuan , Li Jun , Zhu Quan , Li Zerong , Li Xiangyuan . Investigations on the Kinetics for the Reaction Class of Hydrogen Abstractions from Substituted Cyclohexane by Hydrogen Atom[J]. Acta Chimica Sinica, 2012 , 0(05) : 585 -590 . DOI: 10.6023/A1106104

References

1 Bryukov, M. J.; Slagle, I. R.; Knyazev, V. D. J. Phys. Chem. A 2001, 105, 6900.  

2 Azatyan, V. V.; Gazaryan, K. G.; Garibyan, T. A. Kinet. Katal. 1988, 29, 38.

3 Gutman, D.; Nelson, H. H. J. Phys. Chem. 1983, 87, 3902.  

4 Sutherland, J. W.; Su, M. C.; Michael, J. V. Int. J. Chem. Kinet. 2001, 33, 669.  

5 Truong, T. N. J. Chem. Phys. 2000, 113, 4957.

6 Zhang, S.; Truong, T. N. J. Phys. Chem. A 2003, 107, 1138.  

7 Lam, K. H.; Artur, R.; Truong, T. N. J. Phys. Chem. A2006, 110, 473.  

8 Krasnoperov, L. N.; Michael, J. V. J. Phys. Chem. A 2004,108, 5643.  

9 Miller, W. H. J. Am. Chem. Soc. 1979, 101, 6810.  

10 Wendell, T. D.; Robert, L. B.; Truong, T. N. J. Comp. Chem. 1998, 19, 1039.  

11 Wang, Y. X.; Duan, X. M.; Wang, Q.; Liu, J. Y. Acta Phys.-Chim. Sinica 2010, 26, 183 (in Chinese). (王永霞, 段雪梅, 王钦, 刘靖尧, 物理化学学报, 2010,26, 183.)

12 Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771.  

13 Zhang, S. W.; Truong, T. N. J. Phys. Chem. A 2003, 107,1138.  

14 Woon, D. E.; Dunning, T. H. J. J. Phys. Chem. 1993, 98,1358.

15 Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811.  

16 Zhang, Q.; Bell, R.; Truong, T. N. J. Phys. Chem. 1995, 99,592.  

17 Andzelm, J.; Sosa, C.; Robert, A. E. J. Phys. Chem. 1993,97, 4664.  

19 Truong, T. N.; Nayak, M.; Huynh, H. H.; Cook, T.; Mahajan, P.; Tran, L. T.; Bharath, J.; Jain, S.; Pham, H. B.; Boonyasiriwat, C.; Nguyen, N.; Andersen, E.; Kim, Y.; Choe, S.; Choi, J.; Cheatham, T. E.; Facelli, J. C. J. Chem. Inf. Model. 2006, 46, 971.  

20 Polanyi, J. C. Acc. Chem. Res. 1972, 5, 161.  

21 Blowers, P.; Masel, R. AIChE J. 2000, 46, 2041.  

22 Nawee, K.; Truong, T. N. J. Phys. Chem. A 2005, 109,7742.  
Outlines

/