Full Papers

Synthesis of Fluorescence Chemodosimeters for Detection of Hg2+ Based on Desulfurization of Thiocarbonyl Rhodamine B Derivatives and the Influence of Molecular Hydrogen Bond

  • Huang Wenjun ,
  • Wu Wenhui ,
  • Liang Jiaxiang
Expand
  • School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081

Received date: 2011-07-25

  Revised date: 2011-08-28

  Online published: 2011-10-24

Abstract

Based on the irreversible desulfurization of thiocarbonyl promoted by mercury ions, two kinds of chemodosimeters of Rhodamine B derivatives as fluorescent probe respectively containing propylene acyl thiourea group and the propenyl thiourea group (RhBHA and RhBCH) were synthesized. They were used for the detection of Hg2+ ions in aqueous solutions with high selectivity and high sensitivity. According to the fluorescence emission spectra and the colorimetric analysis under visible light, the influence of the chemical environment of thiocarbonyl groups on the desulfurization by mercury ions was studied. The results showed that there was no influence between the ring “open-close” transformation and the intramolecular hydrogen bond. The intramolecular hydrogen bonds increased the susceptibility of RhBHA toward desulfurization by mercury ions. With the molecular ring “open-close” transformation, the color change can be observed by the naked eye. In addition, we also studied the influence of the solvent intermolecular hydrogen bonding on the rate of desulfurization. By trace of the fluorescence intensity changes of RhBHA for Hg2+ at different time interval, it was found that the formation of intermolecular hydrogen bond between the solvents and RhBHA could make the desulfurization rate slow-down.

Cite this article

Huang Wenjun , Wu Wenhui , Liang Jiaxiang . Synthesis of Fluorescence Chemodosimeters for Detection of Hg2+ Based on Desulfurization of Thiocarbonyl Rhodamine B Derivatives and the Influence of Molecular Hydrogen Bond[J]. Acta Chimica Sinica, 2012 , 70(07) : 873 -880 . DOI: 10.6023/A1107252

References

1 Ros-Lis, J. V.; Marcos, M. D.; Mártinez-Má?ez, R.; Rurack, K.; Soto, J. Angew. Chem., Int. Ed. 2005, 44, 4405.  

2 Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129,5910.  

3 Jiang, W.; Wang, W. Chem. Commun. 2009, 3913.  

4 Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280.  

5 Huang, W. J.; Wu, W. H. Imag. Sci. Photochem. 2011, 29,

321 (in Chinese). (黄文君, 吴文辉, 影像科学与光化学, 2011, 29, 321.)

6 Ando, S.; Koide, K. J. Am. Chem. Soc. 2011, 133, 2556.  

7 Chae, M. Y.; Czarnik, A. W. J. Am. Chem. Soc. 1992, 114,9704.  

8 Zhang, G. X.; Zhang, D. Q.; Yin, S. W.; Yang, X. D.; Shuai, Z.; Zhu, D. B. Chem. Commun. 2005, 2161.

9 Liu, B.; Tian, H. Chem. Commun. 2005, 3156.

10 Lee, M. H.; Lee, S. W.; Kim, S. H.; Kang, C.; Kim, J. S. Org. Lett. 2009, 11, 2101.  

11 Lu, Z. J.; Wang, P. N.; Zhang, Y.; Chen, J. Y.; Zhen, S.; Leng, B.; Tian, H. Anal. Chim. Acta 2007, 597, 306.  

12 Du, J.; Fan, J.; Peng, X.; Sun, P.; Wang, J.; Li, H.; Sun, S. Org. Lett. 2010, 12, 476.  

13 Tsukamoto, K.; Shinohara, Y.; Iwasaki, S.; Maeda, H. Chem. Commun. 2011, 47, 5073.  

14 Chen, X.; Baek, K.-H.; Kim, Y.; Kim, S.-J.; Shin, I.; Yoon, J. Tetrahedron 2010, 66, 4016.  

15 Liu, H.; Yu, P.; Du, D.; He, C.; Qiu, B.; Chen, X.; Chen, G. Talanta 2010, 81, 433.  

16 Zhou, Y.; You, X. Y.; Fang, Y.; Li, J. Y.; Liu, K.; Yao, C. Org. Biomol. Chem. 2010, 8, 4819.  

17 Kim, H. N.; Nam, S. W.; Swamy, K. M. K.; Jin, Y.; Chen, X. Q.; Kim, Y.; Kim, S. J.; Park, S.; Yoon, J. Analyst 2011, 136,1339.  

18 Hu, J. M.; Li, C. H.; Liu, S. Y. Langmuir 2010, 26, 724.  

19 Liu, Y.; Lan, X. F.; Shen, Z. H.; Lu, J.; Ni, X. W. Spectrosc. Spectr. Anal. 2005, 25, 242 (in Chinese). (刘莹, 兰秀风, 沈中华, 陆建, 倪晓武, 光谱学与光 谱分析, 2005, 25, 242.)

20 He, H. J.; Zhu, T.; Yu, R. P.; Gu, Z. B.; Xu, H. J. Food Sci. Biotechnol. 2008, 27, 53 (in Chinese). (何海建, 朱拓, 虞锐鹏, 顾正彪, 徐辉, 食品与生物 技术学报, 2008, 27, 53.)

Outlines

/