Full Papers

Fabrication of Ordered Mesoporous Silica-Carbon Nanotubes Composites as Catalyst Supports for Loading with Pt Nanoparticles and Their Electrocatalytic Performance

  • Hu Yuanyuan ,
  • He Jianping ,
  • Wang Tao ,
  • Guo Yunxia ,
  • Xue Hairong ,
  • Li Guoxian
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016

Received date: 2011-10-01

  Revised date: 2011-12-31

  Online published: 2012-01-20

Supported by

The project was supported by the National Natural Science Foundation of China (No. 50871053).

Abstract

Ordered mesoporous silica-carbon nanotubes composites have been obtained using tetraethylorthosilicate as silicon source and cetyltrimethylammonium bromide as templating agent and subsequentlyl were used as supports for loading with platinum nanoparticles by a microwave-irradiated polyol process. X-ray diffraction (XRD) and transmission electron microscope (TEM) show that carbon nanotubes is highly dispersed into silicon oxidation substrate. Electrocatalysis tests reveal that Pt-C/Si catalysts show excellent catalytic performance, which could be due to the doped of the high electrical conductivity carbon nanotubes (CNTs) and the ordered mesoporous structure that is beneficial to electron transfers. When 40 milligram of carbon nanotubes was added to the composites, the electrochemical active surface area (EASA) of this electrocatalyst is 120.9 m2-1 in 0.5 mol稬-1 H2SO4 sulotion, which is higher than Pt-CNTs electrocatalyst and the peak current of methanol oxidation is 80.3 mA穋m-2. Thus, this composite is promising for applications in direct methanol fuel cell.

Cite this article

Hu Yuanyuan , He Jianping , Wang Tao , Guo Yunxia , Xue Hairong , Li Guoxian . Fabrication of Ordered Mesoporous Silica-Carbon Nanotubes Composites as Catalyst Supports for Loading with Pt Nanoparticles and Their Electrocatalytic Performance[J]. Acta Chimica Sinica, 2012 , 70(07) : 822 -830 . DOI: 10.6023/A1110011

References

1 Ling, B. K.; Heng , L.; Jing, Z. G.; Yong, C. L.; Long, K. Appl. Surf. Sci. 2010, 256, 6688.  

2 Su, F. B.; Chee, K. P.; Tian, Z. Q.; Xu, G. W.; Guangyong, K.; Wang, Z.; Liu, Z. L.; Lin, J. Y. Energy Fuels 2010, 24,3727.  

3 Yang, C. W.; Wang, D. L.; Hu, X. G.; Dai, C. S; Liang, Z. J. Alloys Compd. 2008, 448, 109.  

4 Wang, X. M.; Li, N.; Pfefferle, L. D.; Haller, G. L. J. Phys. Chem. C 2010, 114, 16996.  

5 Antolini, E.; Gonzalez, E. R. Solid State Ionics 2009, 180,746.  

6 Formo, E.; Peng, Z.; Lee, E.; Lu, X.; Yang, H.; Xia, Y. N. J. Phys. Chem. C 2008, 112, 9970.  

7 Hung, W. Z.; Chung, W. H.; Tsai, D. S.; Wilkinson, D. P.; Huang, Y. S. Electrochim. Acta 2010, 55, 2116.  

8 Chen, C. S.; Pan, F. M. Appl. Catal. B-Environ. 2009, 91,663.  

9 Lv, H. F.; Mu, S. C.; Cheng, N. C.; Pan, M. Appl. Catal. B: Environ. 2010, 100, 190.  

10 Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.  

11 Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114(27), 10834.

12 Emanuel, K.; Franz, S.; Kristina, G.; Marcus, R.; Thomas, A. G.; Thomas, F. R. K.; Ralph, S.; David, J. S.; Stefan, K. Chem. Mater. 2010, 22, 1624.  

13 Joo, S. H.; Choi, S. J.; Oh, H. Nature 2001, 412, 169.  

14 Patricia, V. V.; Marta, S.; Antonio, B.; Fuertes, A. B. Microporous Mesoporous Mater. 2010, 134, 165.  

15 Hirotomo, N.; Yu, F.; Kouta, I.; Katsuyuki, T.; Masataka, T.; Takashi, K. Carbon 2008, 46, 48.  

16 Mojet, B. L.; Miller, J. T.; Koningsberger, D. C. J. Phys. Chem. B 1999, 103, 2724.  

17 Sun, Z.; Zhang, H.; Zhao, Y.; Huang, C.; Tao, R.; Liu, Z.; Wu, Z. Langmuir 2011, 27, 6244.  

18 Sakae, T.; Hiroshi, M.; Keizo, N.; Hideki, M.; Eishi, T.; Masahiro, K. J. Phys. Chem. C 2007, 111, 15133.  

19 Sakae, T.; Hiroshi, M.; Takafumi, A.; Hideki, M.; Masahiro, K. Top. Catal. 2009, 52, 731.  

20 Amauri, J. P.; Diego, S.; Antonio, G. S. F.; Yoong, A. K.; Morinobu, E.; Oswaldo, L. A. Chem. Eur. J. 2011, 17,3228.

21 Zhang, M.; Wu, Y.; Feng, X.; He, X.; Chen, L.; Zhang, Y. J. Mater. Chem. 2010, 20, 5835.  

22 Lu, X.; Liu, H.; Deng, C.; Yan, X. Chem. Commun. 2011,1210.

23 Kumar, D.; Schumacher, K.; Hohenescher, C. F.; Grun, M.; Unger, K. K. Colloids Surf. A 2001, 109, 187.

24 Yang, D.; Yang, F.; Hu, J. H.; Long, J.; Wang, C. C.; Fu, D. L.; Ni, Q. X. Chem. Commun. 2009, 4447.  

25 Zhang, X. H.; Tang, Q. Q.; Yang, D.; Hua, W. M.; Yue, Y. H.; Wang, B. D.; Zhang, X. H.; Hu, J. H. Mater. Chem. Phys. 2011, 126, 310.  

26 Zhao, G. W.; He, J. P.; Zhang, C. X.; Zhou, J. H.; Chen, X.; Wang, T. J. Phys. Chem. C 2008, 112(4), 1028.  

27 Dang, W. J.; He, J. P.; Zhou, J. H.; Ji, Y. J.; Liu, X. L.; Mei, T. Q.; Li, H. L. Acta Phys.-Chim. Sin. 2007, 23, 1085 (in Chinese). (党王娟, 何建平, 周建华, 季亚军, 刘晓蕾, 梅天庆, 力 虎林, 物理化学学报, 2007, 23, 1085.)

28 Wang, D. W.; Li, F.; Liu, M. Angew. Chem., Int. Ed. 2008,47, 373.  

29 Jarvi, T. D.; Sriramulu, S.; Stuve, E. M. Colloids Surf. A1998, 134, 145.  

30 Xu, C. W.; Shen, P. K. J. Power Sources 2005, 142, 27.  

Outlines

/