Full Papers

Preparation of Polystyrene Functionalized Graphene by Atom Transfer Nitroxide Radical Coupling Reaction

  • Chen Xiaoyi ,
  • Shi Yuanlin ,
  • Yang Dong ,
  • Hu Jianhu ,
  • Yang Pengyuan
Expand
  • a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433;
    b Department of Chemistry, Fudan University, Shanghai 200433

Received date: 2011-12-25

  Revised date: 2012-02-06

  Online published: 2012-02-15

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 50873029, 51073042, 51103026), Shanghai Scientific and Technological Innovation Project (No. 11JC1400600), Shanghai Natural Science Funds (No. 11ZR1403100), and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110071120006).

Abstract

Polystyrene functionalized graphene was prepared by atom transfer nitroxide radical coupling (ATNRC) reaction. Graphene oxide was first reacted with thionyl chloride, followed by esterification with 4-hydroxy-2,2,6,6-tetramethyl-piperidinyl-1-oxyl (HTEMPO) to prepare HTEMPO functionalized graphene (Graphene-HTEMPO). Then, Graphene-HTEMPO was coupled with Br-end-capping polystyrene prepared by atom transfer radical polymerization (ATRP) via ATNRC reaction to obtain polystyrene covalently functionalized graphene (Graphene-g-PS). The thermogravimetric analysis result showed that the graft ratio of PS was 6.68 wt%. The PS on the surface of graphene could be obviously observed from the TEM image. Because of the covalent graft of PS, Graphene-g-PS showed good dispersibility in chloroform, hexane, toluene, methanol, etc., which is favorable to the further application of graphene.

Cite this article

Chen Xiaoyi , Shi Yuanlin , Yang Dong , Hu Jianhu , Yang Pengyuan . Preparation of Polystyrene Functionalized Graphene by Atom Transfer Nitroxide Radical Coupling Reaction[J]. Acta Chimica Sinica, 2012 , 70(07) : 817 -821 . DOI: 10.6023/A1112251

References

1 (a) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. (b) Bai, H.; Li, C.; Wang, X.; Shi, G. J. Phys. Chem. C 2011,115, 5545. (c) Hsieh, C. T.; Hsu, S. M.; Lin, J. Y.; Teng, H. J. Phys. Chem. C 2011, 115, 12367. (d) Ma, W. S.; Zhou, J. W.; Lin, X. D. Acta Chim. Sinica2011, 69, 1463 (in Chinese). (马文石, 周俊文, 林晓丹, 化学学报, 2011, 69, 1463.) (e) Hu, H. T.; Wang, X. B.; Wang, J. C.; Wan, L.; Liu, F. M.; Zheng, H.; Chen, R.; Xu, C. H. Chem. Phys. Lett. 2010,484, 247.  

2 Park, S.; Lee, K. S.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. ACS Nano 2008, 2, 572.  

3 Zhao, Q.; Qiu, D. F.; Wang, X. Y.; Liu, T. X. Acta Chim. Sinica 2011, 69, 1259 (in Chinese). (赵茜, 邱东方, 王晓燕, 刘天西, 化学学报, 2011, 69,1259.)

4 (a) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. (b) Cai, W. M.; Chen, C.; Long, M. C.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4, 6425.  

5 Kang, E. T.; Li, G. L.; Liu, G.; Li, M.; Wan, D.; Neoh, K. G. J. Phys. Chem. C 2011, 114, 12742.

6 Chen, Y.; Zhang, B. Z. B.; Xu, L. Q.; Zeng, L. J.; He, Y.; Kang, E. T.; Zhang, J. J. J. Polym. Sci., Polym. Chem. 2011,49, 2043.  

7 Xu, Z.; Gao, C. Macromolecules 2010, 43, 6716.  

8 Wang, B. D.; Yang, D.; Zhang, J. Z.; Xi, C. B.; Hu, J. H. J. Phys. Chem. C 2011, 115, 24636.  

9 (a) Deng, Y.; Li, Y. J.; Dai, J.; Lang, M. D.; Huang, X. Y. J. Polym. Sci., Polym. Chem. 2011, 49, 1582. (b) Bielawski, C. W.; Dreyer, D. R.; Park, S.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.  

10 (a) Fu, Q.; Lin, W. C.; Huang, J. L. Macromolecules 2008,41, 2381. (b) Lin, W. C.; Huang, B.; Fu, Q. A.; Wang, G. W.; Huang, J. L. J. Polym. Sci. Polym. Chem. 2010, 48, 2991.  

11 Li, C.; Xu, Y. X.; Bai, H.; Lu, G. W.; Shi, G. Q. J. Am. Chem. Soc. 2008, 130, 5856.  

12 Yang, H. F.; Shan, C. S.; Li, F. H.; Han, D. X.; Zhang, Q. X.; Niu, L. Chem. Commun. 2009, 3880.  

13 Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.  

Outlines

/