Special Topic

Effect of Drawing Temperature on Structure and Properties of α'-Phase of Poly(lactic acid)

  • Chen Xiaolang ,
  • Xu Yang ,
  • Sun Zhidan ,
  • Zhang Zhibin ,
  • Hu Shuchun ,
  • Shaw Ling Hsu
Expand
  • a Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031;
    b School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031;
    c Polymer Science and Engineering Department and Materials Research Science and Engineering Center, University of Massachusetts, Amherst, Massachusetts 01003, USA

Received date: 2011-10-17

  Revised date: 2011-12-12

  Online published: 2011-12-22

Supported by

Project supported by the National Natural Science Foundation of China (No. 51003088), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100184120006), the National Science and Technology Supporting Project Foundation of China (No. 2007BAB08B05), Sishi Star (2011) and Hope Star (2008) Foundations of Southwest Jiaotong University, and the Fundamental Research Funds for the Central Universities (No. SWJTU11ZT10).

Abstract

Poly(lactic acid) (PLA) films consisting of α'-forms were prepared and uniaxially drawn. The effects of the drawing temperatures above the glass transition temperature on molecular weight and molecular weight distribution, chain conformation, degree of crystallinity and crystalline phase transformation were investigated by a combination of vibrational spectroscopy (infrared and Raman), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The general appearance of stress-strain behaviour of drawn PLA, and in particular its yield stress and Young’s modulus, is strongly affected by the drawing temperatures. The values decrease with increasing the stretching temperatures. The GPC results showed that the molecular weight decreases and its distribution becomes wider after drawing at various drawing temperatures. It was established that the α'-forms phase of PLA films does not transform into either an α or β crystals upon uniaxial drawing with various temperatures at a fixed draw ratio of 4. However, compared with undrawn α'-forms PLA films, the crystallinity and the degree of orientation of PLA products are greatly influenced by the drawing temperatures. The crystallinity is significantly increased upon deformation. The crystallinity and orientation of PLA products increase with increasing the draw temperature when the stretching temperature is <100 ℃, however, the degree of crystallinity and deformation will decrease when the temperature is ≥100 ℃. While the overall changes in physical properties can be attributed to changes in the degree of crystallinity as a function of drawing temperatures, polarized Raman spectra and XRD clearly illustrated changes and the differences in the amorphous and crystalline orientation as a function of processing conditions.

Cite this article

Chen Xiaolang , Xu Yang , Sun Zhidan , Zhang Zhibin , Hu Shuchun , Shaw Ling Hsu . Effect of Drawing Temperature on Structure and Properties of α'-Phase of Poly(lactic acid)[J]. Acta Chimica Sinica, 2012 , 70(06) : 775 -782 . DOI: 10.6023/A1110171

References

1 Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci. 1998, 67, 405.  

2 Ray, E. D.; Patrik, R. G.; David, E. H. Adv. Mater. 2000,12, 2000.

3 Yu, L.; Dean, K.; Li, L. Prog. Polym. Sci. 2006, 31, 576.  

4 Jain, R. A. Biomaterials 2000, 21, 2475.  

5 Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Adv. Mater. 2007,19, 1309.  

6 Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. Polymer 2000, 41, 8921.  

7 Yu, L.; Christie, G. J. Mater. Sci. 2005, 40, 111.  

8 De Santis, P.; Kovacs, A. J. Biopolymers 1968, 6, 299.  

9 Eling, B.; Gogolewsky, S.; Pennings, A. J. Polymer 1982,23, 1587.  

10 Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; Ten-Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23,634.  

11 Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules2007, 40, 6898.  

12 Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Macromolecules2008, 41, 1352.  

13 Chen, X. L.; Karlish, J. P.; Hsu, S. L. J. Polym. Sci.: Part B Polym. Phys. 2011, 49, 1446.  

14 Witzke, D. R.; Narayan, R.; Kolstad, J. J. Macromolecules1997, 30, 707.

15 Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012.  

16 Aou, K.; Hsu, S. L. Macromolecules 2006, 39, 3337.  

17 Miyata, T.; Masuko, T. Polymer 1997, 38, 4003.  

18 Smith, P. B.; Leugers, M. A.; Kang, S. H.; Yang, X. Z.; Hsu, S. L. Macromol. Symp. 2001, 175, 81.  

19 Kang, S. H.; Hsu, S. L.; Stidham, H. D.; Smith, P. B.; Leugers, M. A.; Yang, X. Z. Macromolecules 2001, 34,4542.  

20 Snyder, R. G. J. Mol. Spectrosc. 1971, 37, 353.  
Outlines

/