Special Topic

Effect of Structure on the Fluorescent Properties of the Hydrophilic Modified Quantum Dots

  • Kong Jun ,
  • Qiu Han ,
  • Yu Min ,
  • Zhang Bingbo
Expand
  • a Jingzhou Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Jingzhou 434100;
    b The Institute for Advanced Materials & Nano Biomedicine, Tongji University, Shanghai 200092

Received date: 2011-06-17

  Revised date: 2011-09-30

  Online published: 2011-11-22

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51003078, 81171393), Program for Young Excellent Talents in Tongji University (No. 2009KJ072) and Program for Outstanding Young Teachers in Tongji University.

Abstract

Quantum dots (QDs), as a new class of biological nanoprobe, its fluorescence properties are related to the detection sensitivity. QDs with different core-shell structures vary in the resistance to the fluorescence quenching during surface modification. In this study, a series of core and core-shell QDs with different structure and composition were designed and synthesized. And they were modified with amphiphilic polymer. Their fluorescence properties during the surface modification were monitored by fluorescence spectroscopy. Experimental results show core QDs are the most easily quenched during the surface modification; the ability of resistance to quenching is enhanced after shell coating on core QDs, and this ability increases with the shell layers increase. Results also indicate the structure and composition of shells affect the resistance to fluorescence quenching. The resistance to fluorescence quenching is greatly enhanced when the core-shell QDs has a reasonable shell structure and composition. Furthermore, specific QD nanoprobes are constructed based on selecting appropriate structure of QDs and coupling with folic acid. The prepared QD nanoprobes are used for detection of breast cancer cells on flow cytometry. The results show that by optimizing the structure of core-shell QDs, the modified hydrophilic QDs have good fluorescence property. And the optimized hydrophilic QDs coupled with folic acid have targeting capability of cancer cells.

Cite this article

Kong Jun , Qiu Han , Yu Min , Zhang Bingbo . Effect of Structure on the Fluorescent Properties of the Hydrophilic Modified Quantum Dots[J]. Acta Chimica Sinica, 2012 , 70(06) : 789 -795 . DOI: 10.6023/A1106173

References

1 Zhang, L. Y.; Zheng, H. Z.; Long, Y. J.; Huang, C. Z.; Hao, J. Y.; Zhou, D. B. Talanta 2011, 83, 1716.  

2 Tavares, A. J.; Chong, L. R.; Petryayeva, E.; Algar, W. R.; Krull, U. J. Anal. Bioanal. Chem. 2011, 399, 2331.  

3 Byers, R. J.; Hitchman, E. R. Prog. Histochem. Cytochem.2011, 45, 201.  

4 Sheng, Z. H.; Han, H. Y.; Hu, X. F.; Chi, C. Dalton Trans.2010, 39, 7017.  

5 Xu, X.; Kong, Y.-F.; He, R.; Ji, J.-J.; Cui, D.-X. Acta Chim. Sinica 2011, 69, 931 (in Chinese). (徐昕, 孔毅飞, 贺蓉, 吉佳佳, 崔大祥, 化学学报, 2011,69, 931.)

6 Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183.  

7 Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. J. Am. Chem. Soc. 2005, 127, 3870.  

8 Darbandi, M.; Thomann, R.; Nann, T. Chem. Mater. 2005,17, 5720.  

9 Lees, E. E.; Nguyen, T. L.; Clayton, A. H. A.; Mulvaney, P.; Muir, B. W. Acs Nano 2009, 3, 1121.  

10 Aldana, J.; Wang, Y. A.; Peng, X. G. J. Am. Chem. Soc.2001, 123, 8844.  

11 Chan, Y.; Zimmer, J. P.; Stroh, M.; Steckel, J. S.; Jain, R. K.; Bawendi, M. G. Adv. Mater. 2004, 16, 2092.  

12 Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Radler, J.; Natile, G.; Parak, W. J. Nano Lett. 2004, 4, 703.  

13 Wuister, S. F.; Donega, C. D.; Meijerink, A. J. Phys. Chem. B 2004, 108, 17393.  

14 Yu, W. W.; Chang, E.; Falkner, J. C.; Zhang, J. Y.; Al-Somali, A. M.; Sayes, C. M.; Johns, J.; Drezek, R.; Colvin, V. L. J. Am. Chem. Soc. 2007, 129, 2871.  

15 Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. J. Am. Chem. Soc. 2003,125, 12567.  

16 Xie, R. G.; Kolb, U.; Li, J. X.; Basche, T.; Mews, A. J. Am. Chem. Soc. 2005, 127, 7480.  

17 Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100,468.  

18 Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019.  

19 Meier, R.; Henning, T. D.; Boddington, S.; Tavri, S.; Arora, S.; Piontek, G.; Rudelius, M.; Corot, C.; Daldrup-Link, H. E. Radiology 2010, 255, 527.  

20 Anbharasi, V.; Cao, N.; Feng, S. S. J. Biomed. Mater. Res. A 2010, 94A, 730.

21 Sun, Y.; Chen, L. B.; Yu, J.; Zhi, X. L.; Tang, S. X.; Zhou, P.; Wang, C. C. Anti-Cancer Drugs 2009, 20, 607.  
Outlines

/